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Already discussed how to perform optimal (semi)-global/
local alignment, why worry about the simpler problem of  
exact string matching?

As we saw, our alignment algorithms scale as O(nm). When 
n ≈ 109 and m ≈ 102 this becomes intractable (especially 
when we 10 of millions of strings of length ~m)

Why Exact Matching?



Why Exact Matching?
Even ignoring, e.g memory access, say filling  
in each matrix cell takes C = 10 CPU cycles.

N = 109 M = 102 R =107

order of genome order of read length order of # of reads

# of ops ≈ N * M * R * C = 1019

ops/sec ≈ 3*109  (3GHz CPU)

# ops / (ops/sec) = secs ≈ 1019 / (3*109) = (1/3) * 1010



Even ignoring, e.g memory access, say filling  
in each matrix cell takes C = 10 CPU cycles.

N = 109 M = 102 R =107

order of genome order of read length order of # of reads

# of ops ≈ N * M * R * C = 1019

ops/sec ≈ 3*109  (3GHz CPU)

# ops / (ops/sec) = secs ≈ 1019 / (3*109) = (1/3) * 1010

~106 Years! (for a relatively small 10M read dataset)

Why Exact Matching?



So, nobody does a naive optimal alignment to map reads

Typical strategy (many variants):

• Find all places where a substring of the 
query matches the reference exactly 
(seeds) 

• Filter out regions with insufficient exact 
matches to warrant further investigation 

• Perform a “constrained” alignment that 
includes these exact matching “seeds”

Requires 
efficient  
exact search

Here is where 
we use our  
alignment DPs

Why Exact Matching?



This is (usually) a heuristic (doesn’t guarantee you find 
all alignment locations for a read).

Why Is This Possible?

But, due to the error profiles of reads, this often works 
well.

error type error rate read length

Illumina subst. ~0.1% 50-300

Nanopore indel 10-30% 5-10kb

Pac Bio indel 10-15% 10-15kb

2nd generation reads are often “paired-end”



Seed & Extend:

Typical Strategies

Seed & Vote:

reference

read

exact match (seed)

reference

read

exact matches (seeds)

only align at best-voted 
location(s)



Exact String Matching Problem

Today, we’ll talk about exact matching algorithms that are 
quadratic (no better than alignment!) and linear.  Then 
we’ll start talking about much faster approaches, but 
they require pre-processing the reference.



Exact String Matching Problem

Given: A string T (called the text) and a string      
         P (called the pattern). 

Find: All occurrences of P in T. 

ATACATACCCATATACGAGGCATACATGGCGAGTGTGC

|T| > |P|
An occurrence of P in T is a substring of T equal to P

T =
P = CGAG

CGAG CGAG



Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

CGAG CGAG

An alignment of P to T is a correspondence between 
T and a substring of P 

all occurrences are alignments but not all alignments are occurrences

CGAGCGAG
alignment 1 alignment 2 alignment 3 alignment 4

(occurrence 1) (occurrence 2)



A naive algorithm

What is the simplest algorithm you can think 
of to solve the exact string matching problem?

Seriously, I’m not going to change the slide until 
somebody suggests something really naive!



A naive algorithm
Naive algorithm 1: Consider all alignments of P to T, and 
report each alignment that is an occurrence.

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs



def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

A naive algorithm

Worst-case Runtime?



A naive algorithm

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

O(N)

O(M) — note, 
a “stupid” implementation 
of this takes M time while a 
reasonable version quits at 
the first mismatching 
character

O(N) * O(M) = O(NM) time



A naive algorithm

Best scenario for naive:

T:  GAGAGGAGTTATATATGAATAGAGATAGAGACGAG

P:  CGAG

Because every alignment but the last disagrees 
on the very first character, the inner loop takes O(1) time, 

except for the single match which takes O(M) time 
O(N+M)



A naive algorithm

Worst scenario for naive:

T:  CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

P:  CCCCG

Because every alignment is a match for 
P, the inner loop requires M char. compares each time 

O(NM)



A naive algorithm

There’s a big gap between  
 The best case time for naive O(N+M) and  
 The worst case time for naive O(NM)

How can we improve the worst case time?

Can we devise a method that is O(N+M) even  
in the worst case?



Another algorithm
The key idea here will be exploiting redundancies (i.e. self-
similarities) in the pattern P.

Say, we have:

P = CGAGACGAGAT
T = CGAGACGAGAACGAGACGAGATCCCTCTAA

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

rather than shift P by 1 position, we can skip by a larger amount:

Next possible  
occ. could start 

here

But we know that 
occ. would match  

up until here



Knuth-Morris-Pratt Algorithm
Knuth, Donald E., James H. Morris, Jr, and Vaughan R. Pratt. "Fast pattern 

matching in strings." SIAM journal on computing 6.2 (1977): 323-350.

The Knuth-Morris-Pratt (KMP) algorithm provides an elegant  
approach to exploiting this intuition, allowing us to 

determine the optimal “skips”

Recall the following definitions:
String s is a prefix/suffix of t if t = su/us — if neither 
s nor u  are ϵ, then s is a proper prefix/suffix of t



Knuth-Morris-Pratt Algorithm
 Main idea: Build a partial match table, pm, that tells us, 

for each proper suffix of P[0:q], the length of the longest 
match between this suffix and a proper prefix of P[0:q].

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9 10

pm[q] 0 0 0 0 0 1 2 3 4 5 0

 In words, pm[q] is the number for which P[0:pm[q]] is the 
longest proper prefix of P that is also a proper suffix of P[0:q]



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

The algorithm progresses as follows, assuming that 
P[0:q-1] matches T[i-q-1, i-1]:

If P[q] = T[i], then if q < m we extend  
the length of the match, otherwise we've 
found a match and set q = pm[q-1]

Else P[q] ≠T[i], then if q = 0 we increment i, 
otherwise we shift the pattern by pm[q-1], 
and set q = pm[q-1]



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA
i-q—1 i-1

q-1



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

i-q i

q

T[i=10] ≠ P[q=10], so we shift the pattern  
to the right by pm[9] = 5 and set q = pm[q-1]



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA
i-q i

q
T[i=10] ≠ P[q=10], so we shift the pattern  

to the right by pm[9] = 5, setting q = pm[q-1]

I
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

Even though we shift by 5, we actually skip even more character 
comparisons because we begin comparing the shifted pattern at 

position q = 5



def kmp(P,T):
    n = len(T)
    m = len(P)
    matches = []
    pi = partialMatchTable(P)
    q = 0
    i = 0
    while i < n:
        if P[q] == T[i]:
            q += 1
            i += 1
            if q == m:
                matches.append(i-q)
                q = pi[q-1]
        else:
            if q == 0:
                i += 1
            else:
                q = pi[q-1]
    return matches



Running Time

analysis following: http://www.cs.ubc.ca/~hoos/cpsc445/Handouts/kmp.pdf

Each pass through the outer loop either increments i 
or shifts the pattern to the right.

Both of these events can occur at most n times, and so, 
the loop, in total, can execute at most 2n = O(n) times.

Assuming pm is precomputed, each event takes 
O(1) time.

Computing pm takes O(m) time — we’ll see that next

KMP runs in O(n+m) time

http://www.cs.ubc.ca/~hoos/cpsc445/Handouts/kmp.pdf


def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

Computing the Partial Match Table

The key to the linearity of partialMatchTable() is 
that we always use pm[0:i] to compute pm[i+1]



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1

pm[q] 0 0

m = 11 k = 0 q = 1
m = 11 k = 0 q = 1loop start:

loop end:



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2

pm[q] 0 0 0

m = 11 k = 0 q = 2
loop start:
loop end:

m = 11 k = 0 q = 2



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3

pm[q] 0 0 0 0

m = 11 k = 0 q = 3
loop start:
loop end:

m = 11 k = 0 q = 3



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4

pm[q] 0 0 0 0 0

m = 11 k = 0 q = 4
loop start:
loop end:

m = 11 k = 0 q = 4



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5

pm[q] 0 0 0 0 0 1

m = 11 k = 1 q = 5
loop start:
loop end:

m = 11 k = 0 q = 5



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6

pm[q] 0 0 0 0 0 1 2

m = 11 k = 2 q = 6
loop start:
loop end:

m = 11 k = 1 q = 6



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7

pm[q] 0 0 0 0 0 1 2 3

m = 11 k = 3 q = 7
loop start:
loop end:

m = 11 k = 2 q = 7



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8

pm[q] 0 0 0 0 0 1 2 3 4

m = 11 k = 4 q = 8
loop start:
loop end:

m = 11 k = 3 q = 8



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9

pm[q] 0 0 0 0 0 1 2 3 4 5

m = 11 k = 5 q = 9
loop start:
loop end:

m = 11 k = 4 q = 9



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9 10

pm[q] 0 0 0 0 0 1 2 3 4 5 0

m = 11 k = 0 q = 10

When this happens, 
k = pm[5-1] = 0, so 

the while loop executes 
once.

loop start:
loop end:

m = 11 k = 5 q = 10



Summary
Despite our ability to solve general pairwise 
alignment, exact matching is still important 

The naive algorithm for the problem takes O(MN) 
time

By exploiting structure in the pattern, we reduce 
the worst case runtime to O(M+N)

Knuth, Morris & Pratt are awesome!

Next time, we’ll see how to do even better by pre-
processing the text.


