CSE 549: Suftix Tries &
Suffix Trees

‘\\\w Stony Brook

University

KMP is great, but

ITl=m |P|=n (note: m,n are opposite from previous lecture)

Without pre- Given pre- Without pre- Given pre-
processing processing processing processing
(KMP) (KMP) (ST) (ST)

Find an
occurrence of P

Find all
occurrences of
P

Find an
occurrence of

It the text is constant over many patterns, pre-processing
the text rather than the pattern is better (and allows other efficient queries).

Tries

A trie (pronounced “try”) is a rooted tree representing a collection of strings with
one node per common prefix

Smallest tree such that:
Each edge is labeled with a characterce 2
A node has at most one outgoing edge labeled ¢, force 2

Each key is “spelled out” along some path starting at the root

Natural way to represent either a set or a map where keys are strings

This structure I1s also known as a 2-tree

Tries: example

Represent this map with a trie:

Key Value
1 n

instant

internal 2

S
Internet 3 t <:>
a
The smallest tree such that:
Each edge is labeled with a characterce 2 " §
t
O

: a
A node has at most one outgoing edge

labeled ¢, force 2

Each key is “spelled out” along some path @ @
starting at the root

Tries: example

Checking for presence of a key P,
wheren=|P|,is O(n) time

If total length of all keys is N, trie
has O(N) nodes

What about | 2 | ?

Depends how we represent outgoing
edges. If we don’tassume |2 |is a

small constant, it shows up in one or
both bounds.

Tries: another example

We can index T with a trie. The trie maps
substrings to offsets where they occur

14

12

18

10
16

root:

18,0
10

16

Indexing with suffixes

Some indices (e.g. the inverted index) are based on extracting substrings from T

A very different approach is to extract suffixes from T. This will lead us to
some interesting and practical index data structures:

5] % q 6] s 3 A

n};{ Q I BANANA$. 5 | AS A N

4w Q O, °A ,O 3] ANAS A N

;5 ? : tr s’V NA -7 $’r‘ V-‘NA$ L ANANAS A B

35“ " ¢ 5 4 2 1 BANANAS B $

? ? : $ / \ NAS 4| NAS N A

& é Q P < 21 NANAS N A
! ; 3] |1 —

i Suffix Trie Suffix Tree Suffix Array FM Index

Trie Definitions

A 2-tree (trie) is a rooted tree where each edge is labeled with a single
character ¢ € 2, such that no node has two outgoing edges labeled with
the same character.

 foranodevinT, depth(v) or node-depth(v) is the distance from v to the root.
 node-depth(r) =0

* string(v) = concatenation of all characters on the pathr ~ v

 string-depth(v) = [string(v)| (note: string-depth(v) > node-depth(v))

e for a string X, if 3 node v with string(v) = X, we say node(x) = v

e T displays string x if 3 node v and string y such that xy = string(v)

« words(T) ={ x| T displays x}

* A suffix trie of string s is a 2-tree such that words(T) = {s’ | s’ is a substring of s}

* An internal/leaf edge leads to an internal/leaf node

Defs. from: http://profs.sci.univr.it/~liptak/AL Bioinfo/files/sequence_analysis.pdf

http://profs.sci.univr.it/~liptak/ALBioinfo/files/sequence_analysis.pdf

Suffix trie

Build a trie containing all suffixes of atext T

I: GTTATAGCTGATCGCGGCGTAGCGG

GTTATAGCTGATCGCGGCGTAGCGG T

TTATAGCTGATCGCGGCGTAGCGG
TATAGCTGATCGCGGCGTAGCGG
ATAGCTGATCGCGGCGTAGCGG
TAGCTGATCGCGGCGTAGCGG
AGCTGATCGCGGCGTAGCGG
GCTGATCGCGGCGTAGCGG
CTGATCGCGGCGTAGCGAG
TGATCGCGGCGTAGCGG
GATCGCGGCGTAGCGG
ATCGCGGCGTAGCGG
TCGCGGCGTAGCGAG
CGCGGCGTAGCGG
GCGGCGTAGCGG
CGGCGTAGCGAG

GGCGTAGCGG

GCGTAGCGG

CGTAGCGG

GTAGCGG

TAGCGG

AGCGG

GCGG

CGG

GG

G 1

m(m+1)/2
chars

Suffix trie

First add special terminal character $ to theend of T

$ is a character that does not appear elsewhere in T, and we define it
to be less than other characters (for DNA:S <A< C<G<T)

$ enforces a rule we're all used to using: e.g. “as” comes before “ash”in the
dictionary. $ also guarantees no suffix is a prefix of any other suffix.

I: GTTATAGCTGATCGCGGCGTAGCG
GTTATAGCTGATCGCGGCGTAGCG
TTATAGCTGATCGCGGCGTAGCG
TATAGCTGATCGCGGCGTAGCG
ATAGCTGATCGCGGCGTAGCG
TAGCTGATCGCGGCGTAGCG
AGCTGATCGCGGCGTAGCG
GCTGATCGCGGCGTAGCG
CTGATCGCGGCGTAGCG
TGATCGCGGCGTAGCG
GATCGCGGCGTAGCG
ATCGCGGCGTAGCG
TCGCGGCGTAGCG
CGCGGCGTAGCG
GCGGCGTAGCG
CGGCGTAGCG

G

GGCGTAGC
GCGTAGC G

AN AN A A A A A A A R KA KA AR A2 KN
A A A AAAAAAAAAAAAAAA

l

Suffix trie

a b \$
/ Shortest
T: abaaba T$: abaaba$ " ‘ ‘ (n?;_empty)
4 AV . SUTTIX
Each path from root to leaf represents a ‘ ‘ ‘
suffix; each suffix is represented by some : 5 2 \¢
path from root to leaf (‘ ‘

a

Would this still be the case if we hadn’t

added $? () (

5

O C

2 \$

D O C

D

YO

A

C

e

Cg Longest suffix

Suffix trie

a \b

Each path from root to leaf represents a

suffix; each suffix is represented by some
path from root to leaf ‘ ‘ ‘

T: abaaba

Would this still be the case if we hadn’t
added $? No ' ' '

Suffix trie)

a pb \$

We can think of nodes as having labels, ‘ ‘ ‘

where the label spells out characters on the
path from the root to the node

a b \$

OQQ
Q 0
0 0
0

0 0

baa

Suffix trie

How do we check whether a string S'is a
substring of T?

Note: Each of T's substrings is spelled out
along a path from the root. l.e., every
substring is a prefix of some suffix of T.

a b \$

Q(DQ

a b \$

000»
0 00

. S=Dbaa
" Yes, it's a substring

OQQ
Q 0
0 0
0

Suffix trie

How do we check whether a string S'is a
substring of T?

Note: Each of T's substrings is spelled out
along a path from the root. l.e., every
substring is a prefix of some suffix of T.

Start at the root and follow the edges
labeled with the characters of S

If we “fall off” the trie -- i.e. there is no
outgoing edge for next character of S, then
Sis not a substring of T

If we exhaust S without falling off, Sis a
substring of T

a b \$

QQQQ)
0 00

_S=baa
Yes it's a substring

OQQ
Q 0
0 0
0

Suffix trie o

a b \$
How do we check whether a string Sis a (‘ ‘ ‘
substring of T? a o\ a
Note: Each of T's substrings is spelled out ‘ ‘ ‘
along a path from the root. l.e., every S 2 \$
substring is a prefix of some suffix of T. < ‘ ‘
a B \$ b
Start at the root and follow the edges C) <> ‘
labeled with the characters of S s b
If we “fall off” the trie -- i.e. there is no O <> ‘
outgoing edge for next character of S, then -
Sis not a substring of T \S(e_s ait)’jzbsibstring
—

If we exhaust S without falling off, Sis a
substring of T

Suffix trie 0

a b \$
How do we check whether a string Sis a ‘ ‘. ‘
substring of T? a b \$ 3
Note: Each of T's substrings is spelled out ‘ ‘ ‘
along a path from the root. l.e., every - : 2 \$
substring is a prefix of some suffix of T. ‘ <> ‘

a a \$
Start at the root and follow the edges C) ‘ ‘ CS\ X
S b

labeled with the characters of S
2 'S =baabb

If we “fall off” the trie -- i.e. there is no O ‘ No, not a substring
outgoing edge for next character of S, then

Sis not a substring of T

If we exhaust S without falling off, Sis a
substring of T

Suffix trie

How do we check whether a string S'is a
suffix of T?

(10
a b \$
Q(DQ
a b \$
000»
b 5 1 \$
0 00
Sbaa
Not a suffix
000
Q 0
0 0

Suffix trie 0

a b \$

How do we check whether a string S'is a ‘ “ ‘
suffix of T? a b \s

Same procedure as for substring, but ‘ ‘ ‘ “

additionally check whether the final node in

the walk has an outgoing edge labeled $ ‘ ‘, ‘
‘ S =baa
Not a suffix

OQQ
Q 0
0 0
0

Suffix trie

How do we check whether a string S'is a
suffix of T?

Same procedure as for substring, but
additionally check whether the final node in
the walk has an outgoing edge labeled $

S =aba
Is a suffix

Suffix trie 0

a b \$
How do we count the number of times " ‘
a string S occurs as a substring of T? a fo \$ a
' " [S=aba

” 2 occurrences

SO0
O &
>
i

Suffix trie Q

How do we count the number of times " ‘ ‘

a string S occurs as a substring of T?
Follow path corresponding to S. . ‘ ‘

Either we fall off, in which case S =aba
answer is 0, or we end up at node n ” 2 occurrences

and the answer = # of leaf nodes in

a 3 $
the subtree rooted at n.
O OO
S s

Leaves can be counted with depth-first

traversal. Q ‘

N}

O

Suffix trie

How do we find the longest repeated
substring of T?

(2
a p \$
() O
a [b \$ a
OO O G
b : a \$
aba
a a \$ b
OO0OC
S . -
OO0 C
O O

Suffix trie

How do we find the longest repeated
substring of T?

Find the deepest node with more
than one child

a pb \$

(OO 0O O
OO OO
%) b 5
OO O
O O

Suffix trie

How many nodes does the suffix trie have?

Is there a class of string where the number
of suffix trie nodes grows linearly with m?

Suffix trie

- ?
How many nodes does the suffix trie have? T=a3aaa

Is there a class of string where the number
of suffix trie nodes grows linearly with m?

Yes: e.g. a string of m a’s in a row (a™)

* 1 Root

 m nodes with
incoming a edge

e m+ 1 nodes with
incoming $ edge

2m + 2 nodes

Suffix trie

Is there a class of string where the number
of suffix trie nodes grows with m?2?

Suffix trie

Is there a class of string where the number N /O\
of suffix trie nodes grows with m?2? I = aaabbb /Q :

8 R

Yes: anb”

¢ o
e 1 root

* n nodes along “b chain,” right ‘ b¢ Figure & example
* n nodes along “a chain,” middle by Carl Kinasford
 n chains of n“b” nodes hanging off each”“a chain” node ‘ y-ar J
*2n+ 1 $ leaves (not shown)

n2 + 4n + 2 nodes, where m = 2n

Suffix trie: upper bound on size

Could worst-case # nodes be worse than O(m?2)?

Max # nodes from top to bottom
= length of longest suffix + 1
=m+1

Suffix trie

)
—/

Deepest leaf

Max # nodes from left to right
= max # distinct substrings of any length
<m

O(m?) is worst case

Suffix trie: actual growth

Built suffix tries for the first
500 prefixes of the lambda
phage virus genome

Black curve shows how #
nodes increases with prefix
length

suffix trie nodes

50000 100000 150000 200000 250000

0

—— mAh2
—6— actual
e m

///I))

I I I I I
0 100 200 300 400

Length prefix over which suffix trie was built

500

Suffix tries -> Suffix trees

Suffix Tree Definitions

A Z+-tree Is a rooted tree, T, where each edge is labeled with non-empty
strings, where no node has two outgoing edges labeled with strings having
the same first character. T is compact if all internal nodes have > 2 children.

for a node v in T, depth(v) or node-depth(v) is the distance from v to the root.
node-depth(r) = O

string(v) = concatenation of all characters on the pathr ~ v
string-depth(v) = |string(v)| (note: string-depth(v) > node-depth(v))
for a string x, if 3 node v with string(v) = x, we say node(x) = v

T displays string x if 3 node v and string y such that xy = string(v)

words(T) = { x| T displays x}

A suffix tree of string s is a compact 2+-tree such that
words(T) = {s’ | s’ is a substring of s}

Defs. from: http://profs.sci.univr.it/~liptak/AL Bioinfo/files/sequence_analysis.pdf

http://profs.sci.univr.it/~liptak/ALBioinfo/files/sequence_analysis.pdf

Suffix trie: making it smaller

T = abaaba$ /Q\$
b

I ldea 1: Coalesce non-branching paths
95 (i) \. ? into a single edge with a string label

Ao 4T
ivi b /A
SRR .
s

Reduces # nodes, edges,
¢ guarantees internal nodes have >1 child

Suffix tree L leaves, | internal nodes, E edges

1 internal node branches)

L+1-1=2I=1=<L-1

L < m (at most m suffixes)

E=L+1-1
T = abaab
abaabas E = 2I (eac]
but
aba$
aba$ \ I<m-]
abaS . & E=L+I_

l<2m-2

E+L+I<4m-3 e O(m)

s the total size O(m) now?

Suffix tree L leaves, | internal nodes, E edges

E=L+1-1
T = abaaba$

E > 21 (each internal node branches)
L+I-1=22I=1=<L-1
but

L < m (at most m suffixes)

aba$ \ I<m-1
aba$ b l

E=L+I-1<2m-2
E+L+I<4m-3 e O(m)

s the total size O(m) now?

NO: The total length of edge labels is quadratic in m.

Suffix tree

T = abaaba$ Idea 2: Store T itself in addition to the tree. Convert tree’s
edge labels to (offset, length) pairs with respect to T.

/Q\ T = abaaba$
(1, 2)
S (1 2) & (1)
) I
\“ abas (3, 4)

$ aba$ \ 61 (3, 4)
aba$. & 34 &

N
0\

Space required for suffix tree is now O(m)

Suffix tree: leaves hold offsets where suffixes begin

T = abaaba$ /Ci\ T = abaaba$
o 6, 1) 0 1)/?\(6, 1

(1,2) 1,2 e
(6, 1) 1
(1,2) \‘(6,% . 0,9 \ % 6,1)
(3, 4) S AR
6 1) B4 % 6.1 34 1
N 3,4) |3 \
/ 2
0)

Suffix tree: labels

T = abaaba$

6

Again, each node’s label equals the
concatenated edge labels from the root to
the node. These aren't stored explicitly.

"~ Label =“pa"

(3,4)

(6, 1)
/
4

\

1

<« Label ="aaba$s”

Suffix tree: labels

T = abaaba$
(O’ 1& 7

Because edges can have string labels, we
must distinguish two notions of “depth”

* Node depth: how many edges we must
follow from the root to reach the node

» Label depth: total length of edge labels
for edges on path from root to node

Suffix tree: space caveat

T = abaaba$

Minor point:

We say the space taken by the edge labels is
O(m), because we keep 2 integers per edge and
there are O(m) edges

To store one such integer, we need enough bits
to distinguish m positions in T, i.e. ceil(loga m)
bits. We usually ignore this factor, since 64 bits is
plenty for all practical purposes.

Similar argument for the pointers / references
used to distinguish tree nodes.

Suffix tree: building

Naive method 1: build a suffix trie, then

coalesce non-branching paths and relabel /Ci\
edges 6,1)
(0.1) (1,2) T6

Naive method 2: build a single-edge tree 6.1)

representing only the longest suffix, then (1,2) \ £ (6/, 1)

augment to include the 2nd-longest, then 2] &4

augment to include 3rd-longest, etc (6, 1) 3, 4) 1
3.4 13 \

Both are O(m?) time, but first uses / 5

O(m?2) space while second uses O(m) 0

Naive method 2 is described in Gusfield 5.4

Python implementation at; http://nbviewer.ipython.org/6665861

WOTD (Write-Only Top-Down) Construction

Giegerich, Robert, and Stefan Kurtz. "A comparison of imperative and purely functional
suffix tree constructions." Science of Computer Programming 25.2 (1995): 187-218.

Build a suffix tree for string s$

Recursive construction:

—or every branching node node(u), subtree of
node(u) is determined by all suffixes of s$
where u Is a prefix.

Recursively construct subtree for all suffixes
where u is a prefix.

Definition: remaining suffixes of u

R(node(u)) = { v | uv is a suffix of s$ }

WOTD (Write-Only Top-Down) Construction

Build a suffix tree for string s$

Recursive construction:

For every branching node node(u), subtree of node(u)
is determined by all suffixes of s$ where u is a prefix.

Recursively construct subtree for all suffixes where u is
a prefix.

Definition: remaining suffixes of u
R(node(u)) = { v | uv is a suffix of s$ }

Definition: c-group of node(u)
group(node(u), c) = {w e 2" | cw € R(node(u))}

WOTD (Write-Only Top-Down) Construction

def WOTD(T : tree, node(u): node):
for each c € X u {$}:

G = group(node(u), c) non-pbranching suffix
ucv = lcp(G)
it |G| == 1.

add leaf node(ucv) as a child of node(u)
else:

add inner node(ucv) as a child of node(u)
WOTD(T, node(ucv))

branching suffix

Start the algorithm by calling WOTD(T, node(e))

root node

WOTD Example

s = ttatctctta$

O
ttatctctta}
tatctctta}
atctctta}

suffixes are tctcttal

ctctta}$

read top-to-bottom tcttal
ctta}$
tta}$
ta}$
a $
$

<

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13L ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = ttatctctta

O
C
at t
® O O
t $ ct taccta
C t a atttas}
¢ t $ tcct$
C a ctta
t $ tct$
t cta
a tt$
$ t a
a$
$

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13L ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = ttatctctta

O
C
a . t .
O O o)
t $ ct taQta
C t a attta}
+ t$ tcct$
C a ctta
t $ tct$
t c ta
a tt$
$ t a
a$
$

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13L ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = ttatctctta

O
C
at i
e O O
t $ c t ac:t
C t a T a
t t$ o e ®
C : t$g ct t}$
t $ C t a C
t t t$ ¢t
d C a C
$ t $ t
t t
a a
$ $

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13L ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Example

S = ttatctctta

example from: http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13L ecture4Materials/wotd. pdf

http://www.mi.fu-berlin.de/wiki/pub/ABI/SS13Lecture4Materials/wotd.pdf

WOTD Properties

* Worst case time still € O([T]?)

* Expected case time € O(|T| log |T|)

* Write-only property & recursive construction lends
itselt well to parallelism

* Good caching properties (locality of reference for substrings
belonging to a subtree)

* Jop-down construction order allows lazy construction
as discussed in:

Giegerich, Robert, Stefan Kurtz, and Jens Stoye. "Efficient implementation of lazy suffix
trees." Software: Practice and Experience 33.11 (2003): 1035-1049.

Suffix tree: building

Other methods for construction:

Ukkonen, Esko. "On-line construction of suffix trees."
Algorithmica 14.3 (1995): 249-260.

O(m) time and space

Has online property: if T arrives one character at a time, algorithm
efficiently updates suffix tree upon each arrival

We won't cover it here; see Gusfield Ch. 6 for details

Or just Google “Ukkonen’s algorithm”

Suffix tree: actual growth

suffix trie nodes

o
o
. o 2m
Built suffix trees for the first 2 |- actual
500 prefixes of the lambda ——m
phage virus genome S
S -
Black curve shows # nodes
increasing with prefix length Qo
8 37
c
3
Compare with suffix trie: £ o |
« ¥
S
N
" 123 K o —
g nodes | | | | | |
i 100 200 300 400 500

‘ w w w w w Length prefix over which suffix tree was built

0 100 200 300 400 500

Length prefix over which suffix trie was built

Suffix tree

How do we check whether a string S'is a
substring of T?

6

S =Dbaa
Yes, it's a
substring

Suffix tree

How do we check whether a string S'is a
substring of T?

Essentially same procedure as for 6

suffix trie, except we have to deal with
coalesced edges

S =Dbaa
Yes, it's a
substring

Suffix tree

How do we check whether a string S'is a
suffix of T7

Essentially same procedure as for

suffix trie, except we have to deal with
coalesced edges

Suffix tree

How do we count the number of times
a string S occurs as a substring of T?

Same procedure as for suffix trie

Suffix tree: applications

With suffix tree of T, we can find all matches of Pto T. Let k = # matches.
E.g.,P=ab, T=abaaba$

Step 1: walk down ab path

O(n)

If we “fall off” there are no matches

Step 2: visit all leaf nodes below

Report each leaf offset as match offset

O(n + k) time

abaaba
ab ab

Suffix tree application: find long common substrings

Helicobacter_pylori_strain_J99

1.60406 -

1.4e+06 +

1.2a+06 -

18+06 »

800000 »

600000 |

400000

200000

Dots are maximal unique
matches (MUMs), a kind of
long substring shared by
two sequences

Red = match was
between like strands,
green = different
strands

1 | L 1 1 L 1 |

0

200000 400000 600000 800000 1e4+06 12e+06 1.4e406 1.6e+06
Helicobacter_pylon_26695

Axes show different strains of Helicobacter pylori, a bacterium
found in the stomach and associated with gastric ulcers

Suffix tree application: find longest common substring

To find the longest common substring (LCS) of X and Y, make a new

string X#Y$ where 7 and §$ are both terminal symbols. Build a suffix
tree for X#Y'$.

X: Xabxa a X [#babxba$ \b $
Y = babxba
X#Y$ = xabxa#babxbas$ vy &y 5] &y |»

abx

#babxba$ /bx \$ a \ba$

Consider leaves: 4 1 0 ’ 0 @

offsets in [0, 4] are #babxba$ ba$ #babxba$ bxa#babxba$ bxba$ | L #babxba$ \ba$
suffixes of X, offsets in

1 7 3 0 6 10 2 8
[6, 11] are suffixes of Y

Traverse the tree and annotate each node according to whether leaves
below it include suffixes of X, Y or both

The deepest node annotated with both X and Y has LCS as its label.
O(| X |+ | Y|) time and space.

Suffix tree application: generalized suffix trees

This is one example of many applications where it is useful to build a
suffix tree over many strings at once

Such a tree is called a generalized suffix tree. These are introduced in
Gusfield 6.4.

XY

a X {#babxba$ \b \ $

abx
#babxba$ /bx \$ a \ba$ % X
: NP ORE (Y) &Y
a#babxba$ pa$ #babxba$ \bxa#babxba$ bxba$ \$ a#tbabxba$ \ba$

1 7 3 0 6 10 2 8

Longest Common Extension

Longest common extension:We are given strings S and T. In the future, many pairs (i,j) will be
provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(i,j) LCE(i.
| j
Build generalized suffix tree for Sand T. o(lS| + |T))

Preprocess tree so that lowest common

ancestors (LCA) can be found in constant time.

This can be done using range-minimum queries O(|S| + [T|)

(RMQ) LCA()

Create an array mapping suffix numbers to leaf O(|S| + |T|)
nodes.

Given query (i,)):
Find the leaf nodes for i and j O(l) R e !
Return string of LCA for i and | O(l) g)

Suffix trees in the real world: MUMmMmer

FASTA file containing “reference” (“text”) .
FASTA file containing

ALU string

e 006 mummer — langmead@igm1l:~ — bash — 12Qx31
Bens-MacBook-Pro:mummer langmead$ cat alu50.fa
>Alu
GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Bens-MacBook-Pro:mummer langmead$ $HOME/software/MUMmer3.23/mummer -maxmatch $HOME/fasta/hgl9/chrl.fa alu50.fa
reading input file "/Users/langmead/fasta/hgl9/chrl.fa" of length 249250621

construct suffix tree for sequence of length 249250621

(maximum reference length is 536870908)
s
B
I

Indexing
phase: ~2
minutes

(maximum query length is 4294967295)
process 2492506 characters per dot
CONSTRUCTIONTIME /Users/langmead/software/MUMmer3.23/mummer /Users/langmead/fasta/hgl9/chrl.fa 125.30
reading input file "alu50.fa" of length 50
matching query-file "alu50.fa"
against subject-file "/Users/langmead/fasta/hg19/chrl.fa"

> Alu
61769671 1 22
, 219929011 1 22
Matching 162396657 1 22
109737840 1 22
phase: 82615090 1 22
32983678 1 22
very fast 84730371 1 22
248036256 1 22
150558745 1 22
11127213 1 22
236885661 1 22
31639677 1 22
16027333 1 22
21577225 1 22
26327837 1 22

243352583 22

Suffix trees in the real world: MUMmMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger
fractions of human chromosome 1

Peak memory usage (megabytes)

1500 2000 2500 3000 3500

1000

500
I

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Time (seconds)

40 60 80 100 120 140

20

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: MUMmMmer

Attempt to build index for whole human genome reference:

mummer: suffix tree construction failed: textlen=3101804822
larger than maximal textlen=536870908

We can predict it would have taken about 47 GB of memory

Suffix trees in the real world: the constant factor

While O(m) is desirable, the constant in front of the m limits wider use
of suffix trees in practice

Constant factor varies depending on implementation:

Estimate of MUMmer’s constant factor = 3.94 GB / 250 million nt
=~ 15.75 bytes per node

Literature reports implementations achieving as little as 8.5
bytes per node, but no implementation used in practice that |
know of is better than = 12.5 bytes per node

Kurtz, Stefan. "Reducing the space requirement of suffix trees." Software Practice
and Experience 29.13 (1999): 1149-1171.

Suffix tree: summary

GTTATAGCTGATCGCGGCGTAGCGG%
: : GTTATAGCTGATCGCGGCGTAGCGG

Organizes all suffixes into an TTATAGCTGATCGCGGCGTAGCGGS$
mcredlblyuseful,ﬂeX|bIedata TATAGCTGATCGCGGCGTAGCGGS
structure, in O(m) time and space ATAGCTGATCGCGGCGTAGCGGS

TAGCTGATCGCGGCGTAGCGG%
: : AGCTGATCGCGGCGTAGCGAG
Analvemethod (e.g.sufﬁxtrle) CCTGATCGCGGCGTAGCGG S
could easily be quadratic or worse CTGATCGCGGCGTAGCGGS
TGATCGCGGCGTAGCGGS

Used in practice for whole genome alignment, GATCGCGGCGTAGCGGS
ATCGCGGCGTAGCGAG

repeat identification, etc TCGCGGCGTAGCG
O CGCGGCGTAGCG

LT D GCGGCGTAGCG

O O @ O CGGCGTAGCG

“4,1) 6,2 (8,18)|(13,1) (3,1)[{(12,14)\(2,24) \(9,17) (10,16) /(7,1) \(1, 1) (16,1) 25,1)
5 O 0O AN DO O Ol GGCGTAGLG
7 11
GCGTAGCAQG

(5,21)((12,14) (8,18)\(23,3) (14,12)(19,7)\(16, 1) (4,22) \(6,2) (8,18)((15,1) [(20,6)\(2,24) (17,9) \(25,1)

G

G

G

G

G

G
CGTAGCGG
. (17,,1) (8(23,3) n (1(16, n . . G T A G C G G
G

G

G

G

G

G

14 22 4 19 16 T A G C G
CIREI N (lm AGCG

GCG
CG

Actual memory footprint (bytes per node) is G
quite high, limiting usefulness

A A A A A A A A A A A AAAAHA

m chars

m(m+1)/2
chars

