CSE 549: Suffix Tries & Suffix Trees

KMP is great, but

|T| = m |P| = n (**note**: m,n are opposite from previous lecture)

	Without pre- processing (KMP)	Given pre- processing (KMP)	Without pre- processing (ST)	Given pre- processing (ST)
Find an occurrence of P	O(m+n)	O(m)	O(m+n)	O(n)
Find all occurrences of P	O(m+n)	O(m)	O(m + n + k)	O(n+k)
Find an occurrence of P ₁ ,,P _ℓ	O(ℓ(m+n))	O(ℓ(m))	O(m + ℓn)	O(ℓn)

If the text is constant over many patterns, pre-processing the text rather than the pattern is better (and allows other efficient queries).

Tries

A trie (pronounced "try") is a rooted tree representing a collection of strings with one node per common prefix

Smallest tree such that:

Each edge is labeled with a character $c \in \Sigma$

A node has at most one outgoing edge labeled c, for $c \in \Sigma$

Each key is "spelled out" along some path starting at the root

Natural way to represent either a *set* or a *map* where keys are strings

This structure is also known as a Σ-tree

Tries: example

Represent this map with a trie:

Key	Value	
instant	1	
internal	2	
internet	3	

The smallest tree such that:

Each edge is labeled with a character $c \in \Sigma$

A node has at most one outgoing edge labeled c, for $c \in \Sigma$

Each key is "spelled out" along some path starting at the root

Tries: example

Checking for presence of a key P, where n = |P|, is O(n) time

If total length of all keys is N, trie has O(N) nodes

What about $|\Sigma|$?

Depends how we represent outgoing edges. If we don't assume $|\Sigma|$ is a small constant, it shows up in one or both bounds.

Tries: another example

We can index *T* with a trie. The trie maps substrings to offsets where they occur

ac	4
ag	8
at	14
cc	12
СС	2
ct	6
gt	18
gt	0
ta	10
tt	16

Indexing with suffixes

Some indices (e.g. the inverted index) are based on extracting substrings from T

A very different approach is to extract *suffixes* from *T*. This will lead us to some interesting and practical index data structures:

Trie Definitions

A Σ -tree (trie) is a rooted tree where each edge is labeled with a single character c ε Σ , such that no node has two outgoing edges labeled with the same character.

- for a node v in T, **depth**(v) or **node-depth**(v) is the distance from v to the root.
- node-depth(r) = 0
- string(v) = concatenation of all characters on the path r → v
- string-depth(∨) = |string(∨)| (note: string-depth(∨) ≥ node-depth(∨))
- for a string x, if \exists node v with **string**(v) = x, we say **node**(x) = v
- T displays string x if ∃ node v and string y such that xy = string(v)
- words(T) = { \times | T displays \times }
- A **suffix trie** of string s is a Σ -tree such that **words**(T) = {s' | s' is a substring of s}
- An internal/leaf edge leads to an internal/leaf node

Build a **trie** containing all **suffixes** of a text *T*

```
T: GTTATAGCTGATCGCGGCGTAGCGG
 GTTATAGCTGATCGCGGCGTAGCGG
  TTATAGCTGATCGCGGCGTAGCGG
   TATAGCTGATCGCGGCGTAGCGG
     ATAGCTGATCGCGGCGTAGCGG
      TAGCTGATCGCGGCGTAGCGG
       AGCTGATCGCGGCGTAGCGG
        GCTGATCGCGGCGTAGCGG
         CTGATCGCGGCGTAGCGG
          TGATCGCGGCGTAGCGG
           GATCGCGGCGTAGCGG
            ATCGCGGCGTAGCGG m(m+1)/2
             TCGCGGCGTAGCGG
                             chars
              CGCGGCGTAGCGG
               GCGGCGTAGCGG
                CGGCGTAGCGG
                  GGCGTAGCGG
                   GCGTAGCGG
                    CGTAGCGG
                     GTAGCGG
                      TAGCGG
                       AGCGG
                        GCGG
                         CGG
                          GG
```

First add special *terminal character* \$ to the end of T

\$ is a character that does not appear elsewhere in T, and we define it to be less than other characters (for DNA: \$ < A < C < G < T)

\$ enforces a rule we're all used to using: e.g. "as" comes before "ash" in the dictionary. \$ also guarantees no suffix is a prefix of any other suffix.

```
T: GTTATAGCTGATCGCGGCGTAGCGG$
 GTTATAGCTGATCGCGGCGTAGCGG$
  TTATAGCTGATCGCGGCGTAGCGG$
   TATAGCTGATCGCGGCGTAGCGG$
    ATAGCTGATCGCGGCGTAGCGG
     TAGCTGATCGCGGCGTAGCGG
       AGCTGATCGCGGCGTAGCGG
        GCTGATCGCGGCGTAGCGG
         CTGATCGCGGCGTAGCGG $
          TGATCGCGGCGTAGCGG
           GATCGCGGCGTAGCGG
            ATCGCGGCGTAGCGG
             TCGCGGCGTAGCGG
              CGCGGCGTAGCGG
               GCGGCGTAGCGG$
                CGGCGTAGCGG$
                 GGCGTAGCGG$
                  GCGTAGCGGS
```

T: abaaba T\$: abaaba\$

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added \$?

T: abaaba

Each path from root to leaf represents a suffix; each suffix is represented by some path from root to leaf

Would this still be the case if we hadn't added \$? No

We can think of nodes as having **labels**, where the label spells out characters on the path from the root to the node

How do we check whether a string *S* is a substring of *T*?

Note: Each of *T*'s substrings is spelled out along a path from the root. I.e., every *substring* is a *prefix* of some *suffix* of T.

How do we check whether a string *S* is a substring of *T*?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of *S*

If we "fall off" the trie — i.e. there is no outgoing edge for next character of *S*, then *S* is not a substring of *T*

If we exhaust *S* without falling off, *S* is a substring of *T*

How do we check whether a string *S* is a substring of *T*?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of *S*

If we "fall off" the trie — i.e. there is no outgoing edge for next character of *S*, then *S* is not a substring of *T*

If we exhaust *S* without falling off, *S* is a substring of *T*

How do we check whether a string *S* is a substring of *T*?

Note: Each of T's substrings is spelled out along a path from the root. I.e., every substring is a prefix of some suffix of T.

Start at the root and follow the edges labeled with the characters of *S*

If we "fall off" the trie -- i.e. there is no outgoing edge for next character of *S*, then *S* is not a substring of *T*

If we exhaust *S* without falling off, *S* is a substring of *T*

How do we check whether a string *S* is a **suffix** of *T*?

How do we check whether a string *S* is a **suffix** of *T*?

Same procedure as for substring, but additionally check whether the final node in the walk has an outgoing edge labeled \$

How do we check whether a string *S* is a **suffix** of *T*?

Same procedure as for substring, but additionally check whether the final node in the walk has an outgoing edge labeled \$

How do we count the **number of times** a string *S* occurs as a substring of *T*?

How do we count the **number of times** a string *S* occurs as a substring of *T*?

Follow path corresponding to S. Either we fall off, in which case answer is 0, or we end up at node nand the answer = # of leaf nodes in the subtree rooted at n.

Leaves can be counted with depth-first traversal.

How do we find the **longest repeated substring** of *T*?

How do we find the **longest repeated substring** of *T*?

Find the deepest node with more than one child

How many nodes does the suffix trie have?

Is there a class of string where the number of suffix trie nodes grows linearly with *m*?

How many nodes does the suffix trie have?

Is there a class of string where the number of suffix trie nodes grows linearly with *m*?

Yes: e.g. a string of m a's in a row (a^m)

Is there a class of string where the number of suffix trie nodes grows with m^2 ?

Is there a class of string where the number of suffix trie nodes grows with m^2 ?

Yes: $a^n b^n$

- 1 root
- *n* nodes along "b chain," right
- *n* nodes along "a chain," middle
- *n* chains of *n* "b" nodes hanging off each "a chain" node
- 2n + 1 \$ leaves (not shown)

$$n^2 + 4n + 2$$
 nodes, where $m = 2n$

by Carl Kingsford

Suffix trie: upper bound on size

Could worst-case # nodes be worse than $O(m^2)$?

 $\leq m$

= max # distinct substrings of any length

 $O(m^2)$ is worst case

Suffix trie: actual growth

Built suffix tries for the first 500 prefixes of the lambda phage virus genome

Black curve shows how # nodes increases with prefix length

Suffix tries -> Suffix trees

Suffix Tree Definitions

A Σ +-tree is a rooted tree, T, where each edge is labeled with *non-empty* strings, where no node has two outgoing edges labeled with strings having the same *first* character. T is **compact** if all internal nodes have ≥ 2 children.

- for a node v in T, depth(v) or node-depth(v) is the distance from v to the root.
- node-depth(r) = 0
- string(v) = concatenation of all characters on the path r → v
- string-depth(v) = |string(v)| (note: string-depth(v) ≥ node-depth(v))
- for a string x, if \exists node v with **string**(v) = x, we say **node**(x) = v
- T displays string x if ∃ node v and string y such that xy = string(v)
- words(\top) = { \times | \top displays \times }
- A suffix tree of string s is a compact Σ+-tree such that
 words(T) = {s' | s' is a substring of s}

Suffix trie: making it smaller

L leaves, I internal nodes, E edges

$$T = abaaba$$
\$

$$E = L + I - 1$$

 $E \ge 2I$ (each internal node branches)

$$L + I - 1 \ge 2I \Rightarrow I \le L - 1$$

but

 $L \le m$ (at most m suffixes)

$$I \leq m-1$$

$$E = L + I - 1 \le 2m - 2$$

$$E + L + I \le 4m - 3 \in O(m)$$

Is the total size O(m) now?

L leaves, I internal nodes, E edges

$$T = abaaba$$
\$

$$E = L + I - 1$$

 $E \ge 2I$ (each internal node branches)

$$L + I - 1 \ge 2I \Rightarrow I \le L - 1$$

but

 $L \le m$ (at most m suffixes)

$$I \leq m-1$$

$$E = L + I - 1 \le 2m - 2$$

$$E + L + I \le 4m - 3 \in O(m)$$

Is the total size O(m) now?

NO: The total length of edge labels is quadratic in m.

T = abaaba\$

Idea 2: Store *T* itself in addition to the tree. Convert tree's edge labels to (offset, length) pairs with respect to *T*.

Space required for suffix tree is now O(m)

Suffix tree: leaves hold offsets where suffixes begin

Suffix tree: labels

Again, each node's *label* equals the concatenated edge labels from the root to the node. These aren't stored explicitly.

Suffix tree: labels

Because edges can have string labels, we must distinguish two notions of "depth"

- **Node** depth: how many edges we must follow from the root to reach the node
- **Label** depth: total length of edge labels for edges on path from root to node

Suffix tree: space caveat

Minor point:

We say the space taken by the edge labels is O(m), because we keep 2 integers per edge and there are O(m) edges

To store one such integer, we need enough bits to distinguish m positions in T, i.e. ceil($\log_2 m$) bits. We usually ignore this factor, since 64 bits is plenty for all practical purposes.

Similar argument for the pointers / references used to distinguish tree nodes.

Suffix tree: building

Naive method 1: build a suffix trie, then coalesce non-branching paths and relabel edges

Naive method 2: build a single-edge tree representing only the longest suffix, then augment to include the 2nd-longest, then augment to include 3rd-longest, etc

Both are $O(m^2)$ time, but first uses $O(m^2)$ space while second uses O(m)

Naive method 2 is described in Gusfield 5.4

Python implementation at: http://nbviewer.ipython.org/6665861

WOTD (Write-Only Top-Down) Construction

Giegerich, Robert, and Stefan Kurtz. "A comparison of imperative and purely functional suffix tree constructions." Science of Computer Programming 25.2 (1995): 187-218.

Build a suffix tree for string s\$

Recursive construction:

For every branching node **node**(u), subtree of **node**(u) is determined by all suffixes of s\$ where u is a prefix.

Recursively construct subtree for all suffixes where u is a prefix.

Definition: remaining suffixes of u

 $R(node(u)) = \{ v \mid uv \text{ is a suffix of s} \}$

WOTD (Write-Only Top-Down) Construction

Build a suffix tree for string s\$

Recursive construction:

For every branching node **node**(u), subtree of **node**(u) is determined by all suffixes of s\$ where u is a prefix.

Recursively construct subtree for all suffixes where u is a prefix.

Definition: remaining suffixes of u

 $R(node(u)) = \{ v \mid uv \text{ is a suffix of s} \}$

Definition: *c-group* of node(u)

group(node(u), c) = { $w \in \Sigma^* \mid cw \in R(node(u))$ }

WOTD (Write-Only Top-Down) Construction

```
def WOTD(T : tree, node(u): node):
      for each c \in \Sigma \cup \{\$\}:
                                       non-branching suffix
        G = group(node(u), c)
        ucv = lcp(G)
         if |G| == 1:
           add leaf node(ucv) as a child of node(u)
        else:
           add inner node(ucv) as a child of node(u)
           WOTD(T, node(ucv))
branching suffix
```

Start the algorithm by calling WOTD(T, node(ϵ))

s = ttatctctta

suffixes are read top-to-bottom

```
t t a t c t c t t a $
t a t c t c t t a $
a t c t c t t a $
t c t c t t a $
t c t c t t a $
t c t c t t a $
t c t c t t a $
t t a $
a $
$
$
```


WOTD Properties

- Worst case time still ∈ O(|T|²)
- Expected case time ∈ O(|T| log |T|)
- Write-only property & recursive construction lends itself well to parallelism
- Good caching properties (locality of reference for substrings belonging to a subtree)
- Top-down construction order allows lazy construction as discussed in:

Giegerich, Robert, Stefan Kurtz, and Jens Stoye. "Efficient implementation of lazy suffix trees." Software: Practice and Experience 33.11 (2003): 1035-1049.

Suffix tree: building

Other methods for construction:

Ukkonen, Esko. "On-line construction of suffix trees." *Algorithmica* 14.3 (1995): 249-260.

O(m) time and space

Has *online* property: if *T* arrives one character at a time, algorithm efficiently updates suffix tree upon each arrival

We won't cover it here; see Gusfield Ch. 6 for details

Or just Google "Ukkonen's algorithm"

Suffix tree: actual growth

Built suffix trees for the first 500 prefixes of the lambda phage virus genome

Black curve shows # nodes increasing with prefix length

Compare with suffix trie:

2m

How do we check whether a string *S* is a substring of *T*?

How do we check whether a string *S* is a substring of *T*?

Essentially same procedure as for suffix trie, except we have to deal with coalesced edges

How do we check whether a string *S* is a suffix of *T*?

Essentially same procedure as for suffix trie, except we have to deal with coalesced edges

How do we count the **number of times** a string *S* occurs as a substring of *T*?

Same procedure as for suffix trie

Suffix tree: applications

With suffix tree of T, we can find all matches of P to T. Let k = # matches.

E.g.,
$$P = ab$$
, $T = abaaba$ \$

Step 1: walk down ab path O(n) If we "fall off" there are no matches

O(k) Step 2: visit all leaf nodes below Report each leaf offset as match offset

O(n + k) time

Suffix tree application: find long common substrings

Axes show different strains of Helicobacter pylori, a bacterium found in the stomach and associated with gastric ulcers

Suffix tree application: find longest common substring

To find the longest common substring (LCS) of X and Y, make a new string X#Y\$ where # and \$ are both terminal symbols. Build a suffix tree for X#Y\$.

X = xabxa
Y = babxba
X#Y\$ = xabxa#babxba\$

Consider leaves: offsets in [0, 4] are suffixes of **X**, offsets in [6, 11] are suffixes of **Y**

Traverse the tree and annotate each node according to whether leaves below it include suffixes of X, Y or both

The deepest node annotated with both X and Y has LCS as its label. O(|X| + |Y|) time and space.

Suffix tree application: generalized suffix trees

This is one example of many applications where it is useful to build a suffix tree over many strings at once

Such a tree is called a *generalized suffix tree*. These are introduced in *Gusfield* 6.4.

Longest Common Extension

Longest common extension: We are given strings S and T. In the future, many pairs (i,j) will be provided as queries, and we want to quickly find:

the longest substring of S starting at i that matches a substring of T starting at j.

LCE(i,j)

Build generalized suffix tree for S and T.

$$O(|S| + |T|)$$

Preprocess tree so that lowest common ancestors (LCA) can be found in constant time. This can be done using range-minimum queries (RMQ)

$$O(|S| + |T|)$$

Create an array mapping suffix numbers to leaf nodes.

$$O(|S| + |T|)$$

Given query (i,j):

Find the leaf nodes for i and j Return string of LCA for i and j

Suffix trees in the real world: MUMmer

22

FASTA file containing "reference" ("text") FASTA file containing **ALU** string $\Theta \Theta \Theta$ mummer — langmead@igm1:~ — bash — 120×31 Bens-MacBook-Pro:mummer langmead\$ cat alu50.fa GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG Bens-MacBook-Pro:mummer langmead\$ \$HOME/software/MUMmer3.23/mummer -maxmatch \$HOME/fasta/hg19/chr1.fa alu50.fa # reading input file "/Users/langmead/fasta/hg19/chr1.fa" of length 249250621 construct suffix tree for sequence of length 249250621 (maximum reference length is 536870908) (maximum query length is 4294967295) process 2492506 characters per dot CONSTRUCTIONTIME /Users/langmead/software/MUMmer3.23/mummer /Users/langmead/fasta/hg19/chr1.fa 125.30 reading input file "alu50.fa" of length 50 # matching query-file "alu50.fa" # against subject-file "/Users/langmead/fasta/hg19/chr1.fa" > Alu 61769671 22 219929011 22 22 162396657 22 109737840 **Columns:** 22 82615090 22 32983678 1. Match offset in T 22 84730371 22 248036256 2. Match offset in P 22 150558745 11127213 22 3. Length of exact match 236885661 22 22 31639677 22 16027333 22 21577225 26327837 22

Indexing phase: ~2 minutes

Matching phase: very fast

243352583

Suffix trees in the real world: MUMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger fractions of human chromosome 1

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: MUMmer

Attempt to build index for whole human genome reference:

```
mummer: suffix tree construction failed: textlen=3101804822 larger than maximal textlen=536870908
```

We can predict it would have taken about 47 GB of memory

Suffix trees in the real world: the constant factor

While O(m) is desirable, the constant in front of the m limits wider use of suffix trees in practice

Constant factor varies depending on implementation:

Estimate of MUMmer's constant factor = 3.94 GB / 250 million nt \approx **15.75 bytes per node**

Literature reports implementations achieving as little as 8.5 bytes per node, but no implementation used in practice that I know of is better than \approx 12.5 bytes per node

Kurtz, Stefan. "Reducing the space requirement of suffix trees." *Software Practice and Experience* 29.13 (1999): 1149-1171.

Suffix tree: summary

Organizes all suffixes into an incredibly useful, flexible data structure, in O(m) time and space

A naive method (e.g. suffix trie) could easily be quadratic or worse

Used in practice for whole genome alignment, repeat identification, etc

 $(3,1) \qquad (7,1) \qquad (1,1) \qquad (25,1)$ $(4,1) \qquad (6,2) \qquad (8,18) \qquad (13,1) \qquad (3,1) \qquad (12,14) \qquad (2,24) \qquad (9,17) \qquad (10,16) \qquad (7,1) \qquad (1,1) \qquad (16,1) \qquad (25,1)$ $(5,21) \qquad (12,14) \qquad (8,18) \qquad (23,3) \qquad (14,12) \qquad (19,7) \qquad (16,1) \qquad (4,22) \qquad (6,2) \qquad (8,18) \qquad (15,1) \qquad (20,6) \qquad (2,24) \qquad (17,9) \qquad (25,1)$ $(17,9) \qquad (25,1) \qquad (16,1) \qquad (17,9) \qquad (25,1)$ $(17,9) \qquad (25,1) \qquad (16,1) \qquad (17,9) \qquad (25,1)$

Actual memory footprint (bytes per node) is quite high, limiting usefulness

m chars GTTATAGCTGATCGCGGCGTAGCGG\$ GCTGATCGCGGCGTAGCGG m(m+1)/2chars

AGCGG

GCGG

CGG