CSE 549: Suftix Arrays

Q\\\V Stony Brook

University

Suffix array

As with suffix tree,

T$=abaaba$ Tis part of index

SA(T) =
(SA ="Suffix Array”)

$
a’$

aabas$ m+ 1
abas Integers

abaabat$
bas}

baaba}

—|h~h|JOlWIN|IULI]O

Suffix array of T is an array of integers in [0, m] specifying the
lexicographic order of TS's suffixes

Another Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

S = Cattcat$ * Store the starting indices of
the suffixes in an array.
| |cattcat$ 8|$
2|attcat$ 6|at$
3|ttcat$ O paboicaly 2|attcat$
4|tcat$ > S|cat$
5 Cat$ the indices jufst I Cattcat$
“come along for
6 at$ the r'ide§ 7 t$
7t$ 4|tcat$
8% 3|ttcat$

index of suffix

suffix of s

slide courtesy of Carl Kingsford

Suffix array

O(m) space, same as suffix tree. Is constant factor smaller?

32-bit integer can distinguish characters in the human genome, so
suffix array is ~12 GB, smaller than MUMmer’s 47 GB suffix tree.

Relationship Between

Suffix Trees & Suffix Arrays

> ={$,a,c,t}
s = cattcat$
12345678

Red #s = starting position of the
suffix ending at that leaf

Edges leaving each node are
sorted by label (left-to-right).

Leaf labels left to right: 86251743

s = cattcat$

$

at$
attcat$

cat$
cattcat$
td

tcat$
ttcat$

WA d— U1 DN O OO

*slide courtesy of Carl Kingsford

Table l. Performance Summary of the Construction Algorithms

Algorithm Worst Case = Time Memory
Prefix-Doubling
MM [Manber and Myers 1993] O(nlogn) 30 8n
LS [Larsson and Sadakane 1999] O(nlogn) 3 8n
Recursive
KA [Ko and Aluru 2003] O(n) 2.5 7-10n
KS [Karkkédinen and Sanders 2003] O(n) 4.7 10-13n
KSPP [Kim et al. 2003] O(n) — —
HSS [Hon et al. 2003] O(n) — —
KJP [Kim et al. 2004] O(nloglogn) 3.5 13-16n
N [Na 2005] O(n) —_ _—
Induced Copying
IT [Itoh and Tanaka 1999] O(n?logn) 6.5 5n
S [Seward 2000] O(n?logn) 3.5 5n
BK [Burkhardt and Kirkkédinen 2003] O(nlogn) 3.5 5—-6n
MF [Manzini and Ferragina 2004] O(n?logn) 1.7 5n
SS [Schiirmann and Stoye 2005] O(n?) 1.8 9-10n
BB [Baron and Bresler 2005] O(n+/logn) 2.1 18n
M [Maniscalco and Puglisi 2007] O(n*“logn) 1.3 5—-6n
MP [Maniscalco and Puglisi 2006] O(n?logn) 1 5—6n
Hybrid
IT+KA O(n®logn) 4.8 5n
BK+IT+KA O(nlogn) 2.3 5-6n
BK+S O(nlogn) 2.8 5-6n
Suffix Tree
K [Kurtz 1999] O(nlogo) 6.3 13-15n

Time is relative to MP, the fastest in our experiments. Memory is given in bytes
including space required for the suffix array and input string and is the aver-
age space required in our experiments. Algorithms HSS and N are included,
even though to our knowledge they have not been implemented. The time for
algorithm MM is estimated from experiments in Larsson and Sadakane [1999].

Puglisi, Smyth, Turpin. A Taxonomy of Suffix Array Construction Algorithms. ACM Computing Surveys, 39(2):4,2007.
*slide courtesy of Carl Kingsford

Suffix array: querying

Is P a substring of T?

1. For Pto be a substring, it must
be a prefix of =1 of T's suffixes

2. Suffixes sharing a prefix are
consecutive in the suffix array

Use binary search

— [] Ol W[N] U] O

$

a$
aabatl
abas$
abaaba}$
ba}$
baaba}

Suffix array: binary search

Python has bisect module for binary search

bisect.bisect_left(a, x):Leftmost offset where we can
insert X into a to maintain sorted order. ais already sorted!

bisect.bisect_right(a, x):Like bisect left, but
returning rightmost instead of leftmost offset

from bisect import bisect_left, bisect_right

a=1[1, 2, 3, 3, 3, 4, 5]
print(bisect_left(a, 3), bisect_right(a, 3)) # output: (2, 5)

a=1[2, 4, 6, 8, 10]
print(bisect_left(a, 5), bisect _right(a, 5)) # output: (2, 2)

Python example: http://nbviewer.ipython.org/6753277

Suffix array: binary search

We can straightforwardly use binary search to find a range of
elements in a sorted list that equal some query:

from bisect import bisect_left, bisect right
strls = ['a', 'awkward', 'awl', 'awls', ‘axe', 'axes', 'bee']

Get range of elements that equal query string ‘awl’
st, en = bisect_left(strls, 'awl'), bisect right(strls, 'awl')

print(st, en) # output: (2, 3)

Python example: http://nbviewer.ipython.org/6753277

Suffix array: binary search

Can also use binary search to find a range of elements in a
sorted list with some query as a prefix:

from bisect import bisect_left, bisect right
strls = ['a', 'awkward', 'awl', 'awls', ‘axe', 'axes', 'bee']

Get range of elements with ‘aw’ as a prefix
st, en = bisect left(strls, 'aw'), bisect left(strls, 'ax')

print(st, en) # output: (1, 4)

Python example: http://nbviewer.ipython.org/6753277

Suffix array: binary search

We can do the same thing for a sorted list of suffixes:

from bisect import bisect left, bisect_right

t = 'abaaba$'
suffixes = sorted([t[i:] for i in xrange(len(t))])

st, en = bisect_left(suffixes, 'aba'),
bisect left(suffixes, 'abb')

print(st, en) # output: (3, 5)

= | hJO|W|IN]|ULI] O

$

as$
aabas$
abas$
abaaba}
bas$
baaba$

Python example: http://nbviewer.ipython.org/6753277

Suffix array: querying

Is P a substring of T?
Do binary search, check whether Pis a

prefix of the suffix there

How many times does P occur in T?

Two binary searches yield the range of
suffixes with P as prefix; size of range
equals # times Poccursin T

Worst-case time bound?

O(loga m) bisections, O(n) comparisons
per bisection, so O(n log m)

— [] Ol W[N] UL O

$

a$
aaba}l
aba}$
abaaba}
ba}$
baaba}

Suffix array: querying

Contrast suffix array: O(n log m) with suffix tree: O(n)

But we can improve bound for suffix array...

6|9
51at$%
2|l aabat
ba

3(abas$
O|labaabat ﬁs
4 ba$ aba$ 3
1l baaba}$ /

0

ba "\
. R
5 /$ aba$
abi$ 4
2

Suffix array: querying

Consider further: binary search for suffixes with P as a prefix
Assume there's no $ in P. So P can’t be equal to a suffix.

Initialize [= 0, ¢ = floor(m/2) and r = m (just past last elt of SA)

(I

“left” “center”

Notation: We'll use use SA[I] to refer to the suffix corresponding to
suffix-array element [. We could write T[SA[/]:], but that’s too verbose.

Throughout the search, invariant is maintained:

SA[l] < P<

Suffix array: querying

Throughout search, invariant is maintained:

SA[l] < P<

What do we do at each iteration?

letc="floor((r+1)/2)
f P <SAJc], either stop or let » = ¢ and iterate
f P> SA|c], either stop or let [= ¢ and iterate

When to stop?

P<SAlclandc=Il+1 - answerisc

P>SA[c]andc=7r-1 - answeris

Suffix array: querying

Say we're comparing P to SA[c] and we've already compared P to
SA|[l] and in previous iterations.

[| LCP(P,SA[l])=3
T— “Length of the LCP”

More generally:

LCP(P, SA|c]) =
SA(T) | ¢ | LCP(P,SA[c]) =3 min(LCP(P, SA[I]), LCP(P,)

We can skip character comparisons

|l
Ul

LCP(P,)

Suffix array: querying

Say we're comparing P to SA[c] and we've already compared P to
SA|[l] and in previous iterations.

[| LCP(P,SA[l])=3
T— “Length of the LCP”

More generally:

LCP(P, SA|c]) =
SA(T) | ¢ | LCP(P,SA[c]) =3 min(LCP(P, SA[I]), LCP(P,)

We can skip character comparisons

worst case still O(n log m), worst case example
but we're closer. S=acwm-2b, P=c

Imagine we had pre-computed LCP(i,j) for all
suffixes | and | in the original text T.

Suffix dalrray. querying Assume, wlog, that
D = LCP(SA[l], SA[c]) = D’ = LCP(SA[c], SA[r])

: : : otherwise there are symmetric cases.
Take an iteration of binary search: Y

length is u

LCP(P, SA[I]), and

LCP(SA[c], SA[])

SA(T) | ¢

key: u has already been
computed by previous iterations,
and D can be looked-up in constant
time

Suffix array: querying

Three cases: or, it D' = LCP(P,) is larger, 3 symmetric cases.

LCP(SA[c], SA[I]) > LCP(SA[c], SA[I]) < LCP(SA[c], SA[l]) =
LCP(P, SA[!]) LCP(P, SA[I]) LCP(P, SA[I])

Suffix array: querying

LCP(SA[c], SA[I]) >

Case 1: LCP(P, SA[]])

SA[/] fuml Next char of P after the LCP(P, SA[I]) must

be greater than corresponding char of SA[c]

P> SA]c]

SA[c]

In this case, we compute
rookherenext LCP(P[u:], SA[c][u:]).
C becomes our new |,
and now we know that

LCP(SA[c], SA[T]) > LCP(P, SA[l]), b/c we just

LCP(P, SA[I]) computed it!

Suffix array: querying

LCP(SA[c], SA[I]) <
Case 2: LCP(P, SA[]])

SA[/] Next char of SA[c] after LCP(SA[c], SA[])

must be greater than corresponding char of P

Look here next

P < SA]c]

In this case, we compute
LCP(Plu:], SA[c][u:]).
C becomes our new r,
and now we know that

LCP(SA[c], SA[I]) < LCP(P,), b/Q we just
LCP(P, SA[I]) computed it!

Suffix array: querying

LCP(SA[c], SA[l]) =

Case 3: LCP(P, SA[T])

Must do further character comparisons

A
SA[l] between P and SA|[c]

Each such comparison either:

(a) mismatches, leading to a bisection

SA[c] (b) matches, in which case LCP(P, SA[c]) grows

LCP(SA[c], SA[l]) =
LCP(P, SA[I])

Suffix array: querying

We improved binary search on suffix array from O(n log m) to O(n + log m)
using information about Longest Common Prefixes (LCPs).

LCPs between P and suffixes of T computed during search, LCPs among
suffixes of T computed offline

LCP(SA[c], SA[I]) > LCP(SA[c], SA[]]) < LCP(SA[c], SA[I]) =
LCP(P, SA[!]) LCP(P, SA[I]) LCP(P, SA[!])

Compare some

Bisect right! Bisect left! .
J characters, then bisect!

Sketch of Running Time

Thm. Given the LCP(X,Y) values, searching for a string P in a suffix
array of length m now takes O(IP| + log m) time.

.

In case 1 & 2, we make O(1) comparisons and bisect left or right — there
are at most O(log m) bisections.

In case 3 we try to match characters starting at some offset between SA|c]
and P. If they match, those characters will never be compared again, so
there are at most O(IPl) such comparisons.

Mismatching characters may be compared more than once.

But there can be only 1 mismatch / bisection. There are O(log m)
bisections, so there are at most O(log m) mismatches.

~.Total # of comparisons = O(IP| + log m).

*slide courtesy of Carl Kingsford

How to pre-compute LCP

e Jo perform this “efficient” search, we must be able to
look up LCP(SA[c], SA[l]) and LCP(SA[c], SA[r]).

* How can we pre-compute this information efficiently?
 Which LCP values do we need (hint: not all of them)?

* Given LCP for left and right sub-interval of a search,
how can we compute LCP for the containing interval?

Suffix array: LCPs

How to pre-calculate LCPs for every (I, ¢) and (c, r) pair in the search tree?

Triples are ([, c, r) triples
(0, 8, 16)

O
(0, 4, 8) g (8,12, 16)

(0,2, 4,68 (810,12 (12,14, 16)

0,1, 2) (2,3,4): 4,5,6) 4 (6, 7,8)§ (8,9,10 s 10,11,12)3(12,13,14 (14,15, 16)

SA(T):

0 5 10 | 15

Example where m =16 (incl.) # search tree nodes =m -1

Suffix array: LCPs

Suffix Array (SA) has m elements

Define LCP1 array with m - 1 elements such that LCP[i] = LCP(SA[il, SA[i+1])

SA(T): LCP1(T)
O § e s T LCP(SAIO], SA[T])
5 a $ oo > 1
2 aaba}$:::::::: 1
3|abas il 3
0 abaaba$2:::O
41 bas :::::Iiff::::
¥ | 2
1{baaba$-—

Suffix array: LCPs

LCP2[i] = LCP(SA[i], SALi+1], SA[i+2])

SA(T): LCP1(T): LCP2(T):

6§ -cmee . .
oot [T REE—

Sl B R ; 1 | g

2| aaba$=lll) o I > 1

3] abat :::ZZZ'.::: 3 -_-_-_-_-_-_-_'.'.'.'_'_'.'.'.; 1

O] abaabas$:i, 5 o

4| basil xS > 0
Pt <

1| baaba$-

min(LCP1[i], LCP1[i+1])

In fact, LCP of a range of consecutive suffixes in SA equals the
minimum LCP1 among adjacent pairs in the range

LCP1 is a building block for other useful LCPs

Suffix array: LCPs

Good time to calculate LCP1 it is at the same time as we build the
suffix array, since putting the suffixes in order involves breaking
ties after common prefixes

SA(T): LCPILT):
) [IR
3o
5 a $ Il > 'I
p) aaba $:::::::: 1
3abag il 3
0 abaaba$::::O
4| bas
7| 2
Tl baaba$-—

Suffix array: LCPs

T = abracadabracada

(0, 8, 16)

@
(0,4, 8) g (8,12, 16)

(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2,3,4): (4,5, 6) ® (6, 7,8)§ (8,9,10 10,11,12)3(12,13,14 (14, 15, 16)

saT): (15114710103 112151811 1114113692
iceim:folils8l1151113]l0l7]l0l4]l0l2]0]6

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
o
(0,4, 8) g (8,12, 16)
(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2,3,4): (4,5, 6) ® (6, 7,8)§ (8,9,10 10,11,12)3(12,13,14 (14, 15, 16)

LCP1(T) 1{8{1|5(1(3]0]7[0]4]10|12(0]6
0 5 10 15

SA(T):‘LTSIM 710110[3[12[518 1111114 [13[6]9]2

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
(O
(0,4, 8) g (8,12, 16)
(0,2,4) 4,6,8) : (810,12 (12,14, 16)
0,1,2) /= 234) (456) ‘ (6,7,8): (8,9, 10)A(0,11,12512,13, 19)>A (14, 15, 16)
[1] © § § §
SA(T):151 (')1'03{2581'1'14136'9'2
LCP1(T): | O 1({511T13[0]7([014[012]0]6

0 5 10 15

Suffix array: LCPs

T = abracadabracada$

(0, 8, 16)

@
(0,4, 8) (8,12,16)

(0,2, 4) 4,6,8) : (810,12 (12,14, 16)

(0,1, 2) (2, 34 (4,5, 6) ‘ (6 7, 8) (8,9,10 10,11,12)3(12,13,14 (14,15,16)

SA(T): [15]14 1031°25 g1 114 13[6[9]2
LCP1(T): | O E. 1[3[0|7]|0|4]0]2]|0]|6

Suffix array: LCPs

T = abracadabracada$

(0, 8, 16)
o
0, 4, 8) (8,12, 16)
0,2.4) 4,68 | (810,12) (12,14, 16)
min(0, 1) n : : : -
0,1,2) Jr= (2, 3, 4 (4,5, 6) (6,7,8): (8,9,10 10,11,12)(12, 13,14 (14,15, 16)
oiE[] v 9 o IiT
sA(T): [15[14 10[3 [12 1] 4 [13 2
LCP1(T): [O | 1 5 3 4 2
0 10 15

Suffix array: LCPs

T = abracadabracada$

| (0 8 16)
%, O
(0, 2, 47X 4,6,8) (810,12) (12,14, 16)

, 6) (6, 7,8)§ (8,9,10 10,11,12)3(12,13,14 (14,15, 16)

L] oo oo o T

SA(T): / .
CPI(T):{O 18T |511T[3]1]0]7(0{4|10[2]0]6
LCP_LC(T):| 0| 0| 8
LCP_CR(T):{ T | T] 1
0 5 10 15

Suffix array: LCPs

T = abracadabracada$

(0,8, 16)
C
: (8,12,16)

4,6,8) : (810,12 (12,14, 16)

(2, 3,4)§ (4,5, 6) @ (6, 7,8)§ (8,9,10 10,11,12x:(12,13.,14 (14, 15, 16)

(0, 4, 8)
(0,2, 4) ®

(0, 1,2)

saT):[15[14] 7o [10[3[12[5[8 1 [11[4[13]6]9
cPim:[ol1|8[1|5[1(3[o[7|0(4]0]2]0]6
e em:lololslols|1]3]ol7[ol4al0]2]0]6
lcP cr:| 11 [1]lof1]o]lo]lolololololo]o0]o0

0 5 10 15

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0O, 1, 2) is at

14

12

11

2

LCP_LC[0], not LCP_LCJ[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LCJ[c-1]

Suffix array: LCPs

Can be done in:

T = abracadabracada$ O(m) time and space

(0,8, 16)
C
: (8,12,16)

4,6,8) : (810,12 (12,14, 16)

(2, 3,4)§ (4,5, 6) @ (6, 7,8)§ (8,9,10 10,11,12x:(12,13.,14 (14, 15, 16)

(0, 4, 8)
(0,2, 4) ®

(0, 1,2)

saT):[15[14] 7o [10[3[12[5[8 1 [11[4[13]6]9
cPim:[ol1|8[1|5[1(3[o[7|0(4]0]2]0]6
e em:lololslols|1]3]ol7[ol4al0]2]0]6
lcP cr:| 11 [1]lof1]o]lo]lolololololo]o0]o0

0 5 10 15

NOTE: These arrays are “shifted” by 1 — the value in LCP_LC corresponding to (0O, 1, 2) is at

14

12

11

2

LCP_LC[0], not LCP_LCJ[1]. So, to look up LCP(SA[l], SA[c]) we look at LCP_LCJ[c-1]

Suffix array: querying review

We saw 3 ways to query (binary search) the suffix array:

1. Typical binary search. Ignores LCPs. O(n log m).

2. Binary search with some skipping using LCPs
between P and T’s suffixes. Still O(n log m), but it
can be argued it’'s near O(n + log m) in practice.

Gusfield:
“Simple Accelerant”

3. Binary search with skipping using all LCPs, Gusfield:
including LCPs among T's suffixes. O(n +logm). “Syper Accelerant”

How much space do they require?

1. ~mintegers (SA)
2. ~m integers (SA)
3. ~3mintegers (SA, LCP_LC, LCP_CR)

Suffix array: performance comparison

>uper simple No accelerant
accelerant accelerant
python -O 68.78 s 69.80 s 102.71 s
pypy -O 537s 5.21s 8.74 s
character 99.5 M 117 M 235 M
comparisons

Matching 500K 100-nt substrings to the ~ 5 million nt-long E. coli
genome. Substrings drawn randomly from the genome.

Index building time not included

Suffix array: building

Given T, how to we efficiently build T's suffix array?

= | | O|W|IDN]| L] O

$

a$
aabat

abas$
abaabas$
ba}$
baabas$

Suffix array: building SA

Idea: Build suffix tree, do a
lexicographic depth-first traversal
reporting leaf offsets as we go

Traverse O(m) nodes and emit m
integers, so O(m) time assuming
edges are already ordered

aba$s 3

/ 2

0

WiNn | L O

(etc)

Suffix array: building LCP1

Can calculate LCP1 at the same time

Yes: on our way from one leaf to
the next, record the shallowest
“label depth” observed

aba$

ba

SA

—

LCP1

Suffix array: building

Suffix trees are big. Given T, how do we efficiently build T’s
suffix array without first building a suffix tree?

$

a$
aabat

abas$
abaabas$
ba}$
baabas$

= | | O|W|IDN]| L] O

Suffix array: sorting suffixes

One idea: Use your favorite sort, e.g., quicksort

O| abaaba$ def quicksort(q):
'] 1t) gt = []) []

baabas if len(q) <= 1:
2| aabat$ return g
3 for x in q[1:]:

abat if x < q[0]: «---"77T T T .-
4 ba$ 1t.append(x) el
5| 5 else:

$ gt.append(x)

6| $ return quicksort(1lt) + g[9:1] + quicksort(gt)

Expected time: O(m2log m)

Not O(m log m) because a suffix comparison is O(m) time

Suffix array: sorting suffixes

One idea: Use a sort algorithm that’s aware that the items
being sorted are strings, e.g. “multikey quicksort”

Ol abaabat

1| baaba$

2] aaba$

3] abat Essentially O(m?) time
41 ba$

5] a$

6| $

Bentley, Jon L., and Robert Sedgewick. "Fast algorithms for sorting and searching strings."
Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, 1997

The Skew Algorithm (aka DC3)

Karkkainen & Sanders, 2003
e Main idea: Divide suffixes into 3 groups:

* Those starting at positions i=0,3,6,9,.... (i mod 3 = 0)
* Those starting at positions [,4,7,10,... (imod 3 = 1[)
* Those starting at positions 2,5,8,1 |,... (i mod 3 = 2)

* For simplicity, assume text length is a multiple of 3 after padding
with a special character.

O 1 2 3

SA=(12,1,6,4,9,3,8,2,7,5,10,11,0)

Basic Outline:

e Recursively handle suffixes from the i mod 3 = | and i mod 3 =2
groups.

e Merge the i mod 3 = 0 group at the end.
*slide courtesy of Carl Kingsford

Step 0 — Constructing a sample
These are called the “sample suffixes”

Step 0: Construct a sample. For k= 0,1, 2, define
B, ={i€[0,n]|imod3 = k}.
Let C' = B; U By be the set of sample positions and S¢ the set of sample suffixes.

Example. By = {1,4,7,10}, B, ={2,5,8,11}, i.e., C = {1,4,7,10,2,5,8,11}.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step | — Sorting the sample

Step 1: Sort sample suffixes. For k£ = 1,2, construct the strings

Ry = [trtksrtiso)[thsstiraliss] - - - [tmax B, tmax By +1tmax B, +2]

whose characters are triples [¢;t;11t;+2]. Note that the last character of Ry is always
unique because tyaxp,+2 = 0. Let R = R; ©® Ry be the concatenation of 7y and
R5. Then the (nonempty) suffixes of R correspond to the set S¢ of sample suffixes:
titi1tizol[tizativativs) . .. corresponds to S;. The correspondence is order preserving,
i.e., by sorting the suffixes of R we get the order of the sample suffixes S¢.

Example. R = |abbl|ada||bbal[do0||bbal|dabl||bad|[000].

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step | — Sorting the sample

To sort the suffixes of R, first radix sort the characters of R and rename them
with their ranks to obtain the string R’. If all characters are different, the order
of characters gives directly the order of suffixes. Otherwise, sort the suffixes of R’
using Algorithm DC3.

Example. R’ = (1,2,4,6,4,5,3,7) and SAr = (8,0,1,6,4,2,5,3,7).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Interlude: Radix Sort

* O(n)-time sort for n items when items can be divided into
constant # of digits.

* Putinto buckets based on least-significant digit, flatten, repeat
with next-most significant digit, etc.

e Example items: 100 123 042 333 777 892 236

100 042 123 236 777
892 333

0 1 2 3 4 5 6 7 3 9

* # of passes = # of digits

* Each pass goes through the numbers once.

*slide courtesy of Carl Kingsford

Step |.5 — Sorting the sample

Example. R = |abbl|ada||lbbal|do0|[bbal|dabl||bad|[000].

Once the sample suffixes are sorted, assign a rank to each suffix. For i € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,+1) = rank(S,2) = 0. For i € By, rank(.S;) is undefined.

1 01 2 3 45 6 7 8 9
Example. rank(S;) L 14126 L53L781L0O0

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

Once the sample suffixes are sorted, assign a rank to each suffix. For 7 € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,+1) = rank(S,.2) = 0. For i € By, rank(S;) is undefined.

7 01 2 3 45 6 7 8 9
Example. rank(S;) L1 4126 1L53L781L00

01 2 3% 567 879
Example. rank(S;) 1L 14126 _L53L78L0O0

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

Once the sample suflixes are sorted, assign a rank to each suflix. For 7 € C,
let rank(S;) denote the rank of S; in the sample set So. Additionally, define
rank(S,,1) = rank(S,,2) = 0. For i € By, rank(.S;) is undefined.

7 0 1 2 3 45 6 7 8 9
Example. rank(S;) L1 4126 L53L781L00
Note: After only 1 level of recursion, these suffixes would be
Iﬁtied!!

Example. R = |abb||ada||bbal|do0||bba||dab]||bad|[000].

The resolved ranks here represent what we'd get after
a second level of recursion.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step |.5 — Sorting the sample

1 2 4 / 4 0 3 3
Example. R = |abb||ada||bbal|do0||bba||dab]||bad|[o00].

Re = [24?][46/][47ft][63‘8]/

A

These suffixes were tied at the previous level, but here, we
can resolve them. The lexical renaming allows us to
compare longer and longer suffixes of the text.

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 2 — Sorting the non-sample suffixes

Step 2: Sort nonsample suffixes. Represent each nonsample suffix S; € Spg,
with the pair (¢;,rank(S;.1)). Note that rank(S;, 1) is always defined for i € B,,.
Clearly we have, for all 7, 7 € By.

Si <5 <= (t;,rank(S;11)) < (t;,rank(S;11)).

The pairs (¢;, rank(S;;1)) are then radix sorted.

Example. Sio < Sg < Sg < S3 < Sy because (0,0) < (a,5) < (a,7) < (b,2) < (y,1).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Step 2 — Sorting the non-sample suffixes

Step 3: Merge. The two sorted sets of suffixes are merged using a standard
comparison-based merging. To compare suffix S; € S¢ with S; € Sp,, we distinguish
two cases:

1 € By S; <5 <= (ti,rank(Sit1)) < (t;,rank(S;j4+1))
i€ By: 5, <S5, = (ti,tiy1,rank(Si12)) < (¢, 41, rank(S;42))

Note that the ranks are defined in all cases.

Example. S, < Sg because (a,4) < (a,5) and S3 < Sg because (b,a,6) < (b,a,7).

Taken from: Karkkainen, J., Sanders, P., & Burkhardt, S. (2006). Linear work suffix array construction. Journal of the ACM
(JACM), 53(6), 918-936.

Running Time

T(n) = O(n) +T(2n/3)

/ \

time to sort and array in recursive calls
merge is 2/3rds the size of
starting array

Solves to T(n) = O(n):
* Expand big-O notation: T(n) < cn +T(2n/3) for some c.
* Guess:T(n) = 3cn
* Induction step: assume that is true for all i < n.

e T(n) <cn+3c(2n/3) =cn + 2cn = 3cn O

*slide courtesy of Carl Kingsford

Handing the | and 2 groups

These are called the “sample suffixes”

S = M1SS1SS1PPisSS

triples for groups
| and 2 groups

1SS|1ss|1pp|lSS|ssi|ssi|ppl

+ = C C B A E E D Sort the triples using a
radix sort, then lexically

name them (i.e. assign
each triple a token

recursively compute

Bﬁ g the suffix array for aCC.OI’dIng tQ it's
CBA ’) tokenized string lexicographical rank).
CCBA |
D7 Every suffix of t corresponds
ED 6 4321765 to a suffix of s (maybe with
EED 5 some cruft at the end of it).

*slide courtesy of Carl Kingsford

Relationship Between T and s

S = Mississippi$S t = CCBAEED
1ss|ilss|ipp|i$S|ssi|ssi|ppl 4
C C B A E E D 4321765

Key Point #1: The lexicographical order of the suffixes of t is the same as the
order of the group | & 2 suffixes of s.

Why!?

Every suffix of t corresponds to some suffix of s (perhaps with some extra
letters at the end of it --- in this case EED)

Because the tokens are sorted in the same order as the triples, the sort
order of the suffix of t matches that of s.

So:The recursive computational of the suffix array for t gives you the ordering
of the group | and group 2 suffixes.

*slide courtesy of Carl Kingsford

Radix Sort

* O(n)-time sort for n items when items can be divided into
constant # of digits.

* Putinto buckets based on least-significant digit, flatten, repeat
with next-most significant digit, etc.

e Example items: 100 123 042 333 777 892 236

100 042 123 236 777
892 333

0 1 2 3 4 5 6 7 3 9

* # of passes = # of digits

* Each pass goes through the numbers once.

*slide courtesy of Carl Kingsford

Handling O Suffixes

* First: sort the group 0 suffixes, using the representation (s[i], Si+1)

* Since the S+ suffixes are already in the array sorted, we can just stably
sort them with respect to s[i], using radix sort.

|,2-array: |ipp|iss|iss|i$S|ppl|ssi|ssi

O-array: mis|pi$|sip|sis

* We have to merge the group 0 suffixes into the suffix array for group | and 2.
* Given suffix $; and $;, need to decide which should come first.

* [f Siand §; are both either group | or group 2, then the recursively
computed suffix array gives the order.

* I[foneofiorjis0 (mod 3),see next slide.

*slide courtesy of Carl Kingsford

Comparing 0 suffix §; with | or 2 suffix §;

Represent S and §; using subsequent suffixes:

I (mod 3) = 1: I (mod 3) =2:

<s[i],s,-+T) < <sm,sz+l> (s[i],s[i+l],S,-+T2) < (S[i],S[i+|],Sj+Tz)

= 2 (mod 3) = [(mod 3) = [(mod 3) = 2 (mod 3)

= the suffixes can be compared quickly because the relative order

of Si+1, Sj+1 or Si+2, Sj+2 is known from the |,2-array we already
computed.

*slide courtesy of Carl Kingsford

Running Time

T(n) = O(n) +T(2n/3)

/ \

time to sort and array in recursive calls
merge is 2/3rds the size of
starting array

Solves to T(n) = O(n):
* Expand big-O notation: T(n) < cn +T(2n/3) for some c.
* Guess:T(n) = 3cn
* Induction step: assume that is true for all i < n.

e T(n) <cn+3c(2n/3) =cn + 2cn = 3cn O

*slide courtesy of Carl Kingsford

Suffix array: sorting suffixes

Another idea: Use a sort algorithm that’s aware that the items
being sorted are all suffixes of the same string

Original suffix array paper suggested an O(m log m) algorithm

Manber U, Myers G. "Suffix arrays: a new method for on-line string
searches." SIAM Journal on Computing 22.5 (1993): 935-948.

Other popular O(m log m) algorithms have been suggested

Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-CS-TR:
99-214, LUNDFD6/(NFCS-3140)/1-43/(1999), Department of Computer
Science, Lund University, Sweden, 1999.

More recently O() algorithms have been demonstrated'

Grkkainen J, Sanders P."Simple linear work suffix array construction”” Autom
guages and Programming (2003): 187-187.

Ko P, Aluru S. "Space efficient linear time construction of suffix arrays
Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2003.

And there are comparable advances with repsect to LCP1

Suffix array: summary

Suffix array gives us index that is:

(@) Just m integers, with O(n log m)
worst-case query time, but close to
O(n + log m) in practice

or (b) 3m integers, with O(n + log m)
worst case

(a) will often be preferable: index for entire human genome fits in

~12 GB instead of > 45 GB

// BANANA
O,_ 0 ,;,O
s/\w&"’jjf /s’/\<NA$
5 O 4 2
$’/\‘NA$
| 1
Suffix Tree

NEEEBEE

$

AS

ANAS
ANANAS
BANANAS
NAS
NANAS

Suffix Array

Enhanced Suffix Arrays

Abouelhoda, Mohamed Ibrahim, Stefan Kurtz, and Enno Ohlebusch. "Replacing suffix trees
with enhanced suffix arrays." Journal of Discrete Algorithms 2.1 (2004): 53-86.

Can restore the full asymptotic efficiency of suffix trees
with a small number of auxiliary tables.

Application Enhanced suffix array
suftab Icptab childtab suflink S bwttab

4nbytes nbytes nbytes 2nbytes nlog|X|bits nlog|Z|bits
esasupermax v v Vi
esamum Vv J v
esarep J J J
Ziv—Lempel v of
esamatch v 4 v Vv
shortest unique sub. v Vv v
esams v v v v v

The operations that can be done optimally in an enhanced suffix array (esa), and the aux.
tables required for them.

Many Suffix Array Variants

Compressed suffix arrays* — require even less space

Compressed enhanced suffix arrays+ — strive for the
best of both worlds and allow interesting query times like
O(n log|2|+k) for finding k occurrences of a pattern,
where |2| is the size of the alphabet (independent of m).

+R. Grossi and J. S. Vitter, Compressed Suffix Arrays and Suffix Trees, with Applications to Text Indexing and
String Matching, SIAM Journal on Computing, 35(2), 2005, 378-407

<+Ohlebusch, Enno, and Simon Gog. "A compressed enhanced suffix array supporting fast string matching."
String Processing and Information Retrieval. Springer Berlin Heidelberg, 2009. x

