
CSE 549: Genome Assembly 
De Bruijn Graph

All slides in this lecture not marked with “*” courtesy of Ben Langmead.



Real-world assembly methods

Both handle unresolvable repeats by essentially leaving them out

Fragments are contigs (short for contiguous)

Unresolvable repeats break the assembly into fragments

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

a_long_long_long_time

a_long_long_time a_long+++++long_time

Assemble substrings 
with Greedy-SCS

Assemble substrings 
with OLC or DBG



De Bruijn graph assembly

A formulation conceptually similar to overlapping/SCS, but has some 
potentially helpful properties not shared by SCS.



k-mer

“k-mer” is a substring of length k

GGCGATTCATCG
ATTCA 4-mer of S:

S:

All 3-mers of S: GGC
+GCG
++CGA
+++GAT
++++ATT
+++++TTC
++++++TCA
+++++++CAT
++++++++ATC
+++++++++TCG

I’ll use “k-1-mer” to refer to a substring of length k - 1

mer: from Greek meaning “part”



De Bruijn graph

AAA, AAB, ABB, BBB, BBA

As usual, we start with a collection of reads, which are substrings of 
the reference genome.

AAB is a k-mer (k = 3).  AA is its left k-1-mer, and AB is its right k-1-mer.

AAB

AA   AB
L R

3-mer

AAB’s left 2-mer AAB’s right 2-mer



De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Take each length-3 input string and split it into two overlapping substrings 
of length 2.  Call these the left and right 2-mers.

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA

Let 2-mers be nodes in a new graph.  Draw a directed edge from each left 
2-mer to corresponding right 2-mer:

AA

AB

BA

BB

L R L R L R L R L R

Each edge in this graph 
corresponds to a length-3 
input string

AAABBBA
take all 3-mers:

form L/R 2-mers:



De Bruijn graph

AA

AB

BA

BB

An edge corresponds to an overlap (of length k-2) between two k-1 mers.  
More precisely, it corresponds to a k-mer from the input.

AAA
AAB

ABB

BBB

BBA



De Bruijn graph

AA

AB

BA

BB

If we add one more B to our input string: AAABBBBA, and rebuild the 
De Bruijn graph accordingly, we get a multiedge.

AAA
AAB

ABB

BBB

BBA

BBB



Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and 
multiset of directed edges, E

Otherwise, like a directed graph

a b

c d

V =  { a, b, c, d }
E =  { (a, b), (a, b), (a, b), (a, c), (c, b) }

Repeated

Node’s indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph



Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

A directed, connected graph is Eulerian if 
and only if it has at most 2 semi-balanced 
nodes and all other nodes are balanced

Graph is connected if each node can be reached by some other node

Jones and Pevzner section 8.8

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks.  Graphs that do are Eulerian. 
(For simplicity, we won’t distinguish Eulerian from semi-Eulerian.)



De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to our De Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian?

Argument 1:  AA → AA → AB → BB → BB → BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Yes



De Bruijn graph

A procedure for making a De Bruijn graph 
for a genome 

Start with an input string: a_long_long_long_time

Take each k mer and split 
into left and right k-1 mers 

Pick a substring length k: 5

long_

long+ong_

Add k-1 mers as nodes to De Bruijn graph 
(if not already there), add edge from left k-1 
mer to right k-1 mer

Assume perfect sequencing where each length-k 
substring is sequenced exactly once with no errors

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time



a_lo

_lon

a_lo

_lon

long

a_lo

_lon

long

ong_ ong_

ng_l

a_lo

_lon

long

ng_l

g_lo

ong_

a_lo

_lon

long

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

First 8 k-mer additions, k = 5
a_long_long_long_time

De Bruijn graph



ng_l

g_lo a_lo

_lon

long

ong_

ng_t

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo a_lo

_lon

long

ong_

Finished graph
a_long_long_long_time
Last 5 k-mer additions, k = 5

De Bruijn graph



With perfect sequencing, this procedure always 
yields an Eulerian graph.  Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Node for k-1-mer from left end is semi-balanced 
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced 
with one more incoming than outgoing *

* Unless genome is circular

Other nodes are balanced since # times k-1-mer occurs 
as a left k-1-mer = # times it occurs as a right k-1-mer 

De Bruijn graph



De Bruijn graph implementation
class%DeBruijnGraph:
%%%%"""%A%De%Bruijn%multigraph%built%from%a%collection%of%strings.
%%%%%%%%User%supplies%strings%and%k>mer%length%k.%%Nodes%of%the%De
%%%%%%%%Bruijn%graph%are%k>1>mers%and%edges%join%a%left%k>1>mer%to%a
%%%%%%%%right%k>1>mer.%"""
%
%%%%@staticmethod
%%%%def%chop(st,%k):
%%%%%%%%"""%Chop%a%string%up%into%k%mers%of%given%length%"""
%%%%%%%%for%i%in%xrange(0,%len(st)>(k>1)):%yield%st[i:i+k]
%%%%
%%%%class%Node:
%%%%%%%%"""%Node%in%a%De%Bruijn%graph,%representing%a%k>1%mer%"""
%%%%%%%%def%__init__(self,%km1mer):
%%%%%%%%%%%%self.km1mer%=%km1mer
%%%%%%%%
%%%%%%%%def%__hash__(self):
%%%%%%%%%%%%return%hash(self.km1mer)
%%%%
%%%%def%__init__(self,%strIter,%k):
%%%%%%%%"""%Build%De%Bruijn%multigraph%given%strings%and%k>mer%length%k%"""
%%%%%%%%self.G%=%{}%%%%%#"multimap"from"nodes"to"neighbors
%%%%%%%%self.nodes%=%{}%#"maps"k515mers"to"Node"objects
%%%%%%%%self.k%=%k
%%%%%%%%for%st%in%strIter:
%%%%%%%%%%%%for%kmer%in%self.chop(st,%k):
%%%%%%%%%%%%%%%%km1L,%km1R%=%kmer[:>1],%kmer[1:]
%%%%%%%%%%%%%%%%nodeL,%nodeR%=%None,%None
%%%%%%%%%%%%%%%%if%km1L%in%self.nodes:
%%%%%%%%%%%%%%%%%%%%nodeL%=%self.nodes[km1L]
%%%%%%%%%%%%%%%%else:
%%%%%%%%%%%%%%%%%%%%nodeL%=%self.nodes[km1L]%=%self.Node(km1L)
%%%%%%%%%%%%%%%%if%km1R%in%self.nodes:
%%%%%%%%%%%%%%%%%%%%nodeR%=%self.nodes[km1R]
%%%%%%%%%%%%%%%%else:
%%%%%%%%%%%%%%%%%%%%nodeR%=%self.nodes[km1R]%=%self.Node(km1R)
%%%%%%%%%%%%%%%%self.G.setdefault(nodeL,%[]).append(nodeR)

Chop string into k-mers

For each k-mer, find left 
and right k-1-mers

Create corresponding 
nodes (if necessary) and 
add edge



For Eulerian graph, Eulerian walk can be found in O(| E |) time.  | E | is # edges.

Convert graph into one with 
Eulerian cycle (add an edge 
to make all nodes balanced), 
then use this recursive 
procedure

#"Make"all"nodes"balanced,"if"not"already

tour%=%[]
#"Pick"arbitrary"node
src%=%g.iterkeys().next()%

def%__visit(n):
while%len(g[n])%>%0:

dst%=%g[n].pop()
__visit(dst)

%%%tour.append(n)
%%%%%%%%
__visit(src)
#"Reverse"order,"omit"repeated"node
tour%=%tour[::>1][:>1]

#"Turn"tour"into"walk,"if"necessary

Insight: If C is a cycle in an 
Eulerian graph, then after 
removing edges of C, 
remaining connected 
components are also Eulerian

http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph



Full illustrative De Bruijn graph and Eulerian walk:

http://nbviewer.ipython.org/7237207

>>>+G+=+DeBruijnGraph(["a_long_long_long_time"],+5)
>>>+print+G.eulerianWalkOrCycle()
['a_lo',+'_lon',+'long',+'ong_',+'ng_l',+'g_lo',+
'_lon',+'long',+'ong_',+'ng_l',+'g_lo',+'_lon',+
'long',+'ong_',+'ng_t',+'g_ti',+'_tim',+'time']

Example where Eulerian walk gives correct answer for 
small k whereas Greedy-SCS could spuriously collapse 
repeat:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph



Another example Eulerian walk:

>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+4)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_thing_turn_turn_turn_there_is_a_season
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Recall: This is not generally possible or tractable in the overlap/SCS 
formulation

De Bruijn graph



Assuming perfect sequencing, procedure yields 
graph with Eulerian walk that can be found 
efficiently.

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

We saw cases where Eulerian walk corresponds to 
the original superstring.  Is this always the case?

De Bruijn graph



No: graph can have multiple Eulerian walks, only one of 
which corresponds to original superstring

BE

EF

AB

BC BY

CD

FA ZA

DA

Right: graph for ZABCDABEFABY, k = 3

Alternative Eulerian walks:

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

These correspond to two edge-disjoint directed 
cycles joined by node AB

AB is a repeat: ZABCDABEFABY

De Bruijn graph



Case where k = 4 works:
>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+4)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_thing_turn_turn_turn_there_is_a_season

But k = 3 does not:

>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+3)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_turn_turn_thing_turn_there_is_a_season

Due to repeats that are unresolvable at k = 3

De Bruijn graph



This is the first sign that Eulerian walks can’t solve 
all our problems

Other signs emerge when we think about how actual 
sequencing differs from our idealized construction

BE

EF

AB

BC BY

CD

FA ZA

DA

De Bruijn graph



Gaps in coverage can lead to disconnected graph

Graph for a_long_long_long_time, k = 5:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph



Gaps in coverage can lead to disconnected graph

Graph for a_long_long_long_time, k = 5 but omitting ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

g_ti

_tim

ng_t

time

Connected components are individually 
Eulerian, overall graph is not

De Bruijn graph



Differences in coverage also lead to non-
Eulerian graph

Graph for a_long_long_long_time, 
k = 5 but with extra copy of ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Graph has 4 semi-balanced nodes, 
isn’t Eulerian

De Bruijn graph



Errors and differences between chromosomes 
also lead to non-Eulerian graphs

Graph for a_long_long_long_time, k = 5 but with 
error that turns a copy of long_ into lxng_

Graph is not connected; largest 
component is not Eulerian

ng_l

g_lo a_lo

_lon

lxng

xng_

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph



Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn Superwalk Problem (DBSP) is an improved formulation where 
we seek a walk over the De Bruijn graph, where walk contains each 
read as a subwalk

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of 
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly." 
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

De Bruijn graph



Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA



Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex



Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex



The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an 
astronomical number 
of possible Eulerian 
tours with perfect data. 

Adding back 
constraints to limit # 
of tours leads to a NP-
hard problem. 

With imperfect data, 
there are usually NO 
Eulerian tours 

Estimating # of 
parallel edges is 
usually tricky.

Aside: counting # of Eulerian tours in a directed 
graph is easy, but in an undirected graph is #P-
complete (hard).

* slide courtesy of Carl Kingsford

k = 50



*

Bursting bubbles

Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn graphs to genome assembly." Nature biotechnology 29.11 (2011): 987-991.



Other useful transformations

collapse nodes u,v if v must follow u and u must precede v

(Kingsford, Schatz, Pop, 2010)



Other useful transformations

Trees in the cycle graph represent subgraphs with 
unique solutions, and can therefore be collapsed 

Can obtain from G a cycle graph, cycle(G) (green above), 
where each vertex is a simple cycle and an edge connects 

two cycles if they share a node in the Eulerian graph G

(Kingsford, Schatz, Pop, 2010)



Other useful transformations

“Half-decision” nodes (those with a single predecessor or 
successor) can be split into multiple nodes that can often be 

further compressed with path-compression

(Kingsford, Schatz, Pop, 2010)



Other useful transformations

Let u→v→w be 3 nodes in a path s.t. u→v has the highest 
multiplicity of edges entering v and v→w has the highest 

multiplicity of edges laving v.  Let cu→v and cv→w be 
multiplies of u→v and v→w.  If u ≠ w, we can infer that 

u→v→w must be part of any Eulerian tour if  
cu→v > d+(v) - cv→w where  d+(v) is the out-degree of v.

(Kingsford, Schatz, Pop, 2010)



Other useful transformations

Replacing non-decision nodes with edges, along 
with the other transformations considered here, 
results in a graph containing either just a single 

node, or only decision nodes that have both more 
than one predecessor and more than on successor.

(Kingsford, Schatz, Pop, 2010)



But first we note that using the De Bruijn graph representation has 
other advantages...

In practice, De Bruijn graph-based tools give up on unresolvable 
repeats and yield fragmented assemblies, just like OLC tools.

De Bruijn graph



To build a De Bruijn graph in practice:

Pick k.  Assume k ≤ shortest read length (k = 30 to 50 is common).

For each read:

For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there 
already.  Draw an edge from left to right k-1-mer.

d = 6 x 109 reads 
n = 100 nt
m = 3 x 109 nt

{

≈ 1 sequencing run

≈ human

Say a sequencer produces 
d reads of length n from a 
genome of length m

De Bruijn graph



a_long_long_long_time

a_long_long_long,+ng_long_l,+g_long_time

Genome:

Reads:
k-mers:

Pick k = 8

a_long_l+
+_long_lo++
++long_lon+
+++ong_long+
++++ng_long_
+++++g_long_l
++++++_long_lo
+++++++long_lon
++++++++ong_long

g_long_t
+_long_ti
++long_tim
+++ong_time

ng_long_
+g_long_l

g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

Given n (# reads), N (total length of all reads) and k, 
and assuming k < length of shortest read:

Exact number of k-mers:  N - n (k -1) O(N)

This is also the number of edges, | E |

Number of nodes | V | is at most 2 ∙ | E |, but 
typically much smaller due to repeated k-1-mers

De Bruijn graph



g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers fit in O(1) machine words, 
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

De Bruijn graph



Timed De Bruijn graph construction applied to progressively longer 
prefixes of lambda phage genome, k = 14

0 10000 20000 30000 40000 50000

0.
00
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20

Length of genome

S
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ds

 re
qu

ire
d 

to
 b

ui
ld

O(N) expectation 
appears to work in 
practice, at least for this 
small example

De Bruijn graph



In typical assembly projects, 
average coverage is ~ 30 - 50

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph



Recall average coverage: average # reads covering a genome position

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

++++++++++++++++++CTAGGCCCTCAATTTTT
++++++++++++++++CTCTAGGCCCTCAATTTTT
++++++++++++++GGCTCTAGGCCCTCATTTTTT
+++++++++++CTCGGCTCTAGCCCCTCATTTT
++++++++TATCTCGACTCTAGGCCCTCA
++++++++TATCTCGACTCTAGGCC
++++TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x 

De Bruijn graph



In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in 
dozens of copies; let’s use 
edge weights instead

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo

20

a_lo

_lon

10

long

ong_

30

20

ng_t

10

g_ti

_tim

10

10

20

30

time

10

Weight = # times 
k-mer occurs

Using weights, there’s 
one weighted edge for 
each distinct k-mer

Before: one 
edge per k-mer

After: one weighted 
edge per distinct k-mer

De Bruijn graph



Say (a) reads are error-free, (b) we have one weighted edge for 
each distinct k-mer, and (c) length of genome is G

# of nodes and edges both O(N); N is total length of all reads

So # of nodes and edges are also both O(G)

Can’t be more distinct k-mers than there are k-mers in the 
genome; likewise for k-1-mers

Combine with the O(N) bound and the # of nodes and 
edges are both O(min(N, G))

There’s one node for each distinct k-1-mer, one edge for 
each distinct k-mer

De Bruijn graph



With high average coverage, O(G) size bound is advantageous

Size of De Bruijn graph grows 
sublinearly when average 

coverage is high
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 k = 30

Genome = lambda phage (~ 48.5 K nt)

Draw random k-mers until target 
average coverage is reached (x axis)  

Build De Bruijn graph and total the # 
of nodes and edges (y axis)

De Bruijn graph



De Bruijn graph

What De Bruijn graph advantages have we discovered?

Can be built in O(N) expected time, N = total length of reads

With perfect data, graph is O(min(N, G)) space; G = genome length

Compares favorably with overlap graph

Fast overlap graph construction (suffix tree) is O(N + a) time

Space is O(N + a).

a is O(n2)

Note: when average coverage is high, G ≪ N



De Bruijn graph

What did we give up?

Reads are immediately split into shorter k-mers; can’t resolve 
repeats as well as overlap graph

Read coherence is lost.  Some paths through De Bruijn graph are 
inconsistent with respect to input reads.

Only a very specific type of “overlap” is considered, which makes 
dealing with errors more complicated, as we’ll see

This is the OLC ⟷ DBG tradeoff

Single most important benefit of De Bruijn graph is the O(min(G, N)) 
space bound, though we’ll see this comes with large caveats



Error correction

When data is error-free, # nodes, edges in de Bruijn graph is O(min(G, N))
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What about data with 
sequencing errors?G bound

 k = 30



Error correction
ng_l

g_lo

20
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_lon
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ng_t

10
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time
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Take an example we saw (left) 
and mutate a k-mer character 
to a random other character 
with probability 1% (right)
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6 errors result in 10 new nodes 
and 6 new weighted edges, all 
with weight 1



Error correction

Same experiment as before but 
with 5% error added
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0% error

5% error

G bound

Errors wipe out much of the 
benefit of the G bound

As more k-mers overlap errors, # nodes, edges approach N

 k = 30

Instead of O(min(G, N)), we have 
something more like O(N)

Lambda phage genome



0% error

5% error

G bound
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Error correction

If we can correct sequencing errors up-front, we can prevent De 
Bruijn graph from growing much beyond the G bound

How do we correct errors?

Analogy: design a spell checker for a language you’ve never seen 
before.  How do you come up with suggestions?



Error correction

k-mer count histogram:

x axis is an integer k-mer count, y axis is # distinct k-mers with that count

Right: such a 
histogram for 3-mers 
of CATCATCATCATCAT:

CAT occurs 5 times

ATC and TCA occur 4 times



Error correction

Say we have error-free sequencing reads drawn from a genome.  
The amount of sequencing is such that average coverage = 200.  
Let k = 20

~ 6,100 distinct k-mers 
occurred exactly 10 
times in the input

How would the picture 
change for data with 
1% error rate?

Hint: errors usually 
change high-count k-mer 
into low-count k-mer
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Error correction

~ 9.6K distinct k-mers 
occur just once

32 distinct k-mers 
occur just once

k-mers with errors usually occur fewer times than error-free k-mers
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Error correction
Idea: errors tend to turn frequent k-mers to infrequent k-mers, so 
corrections should do the reverse
Say we have a collection of reads where each distinct 8-mer occurs an 
average of ~10 times, and we have the following read:

GCGTATTACGCGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&&GTATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&&GTCTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

8-mers:

# times each 8-mer 
occurs in the dataset.  
“k-mer count profile”

All 8-mer counts are around 
the average, suggesting read 
is error-free

(20 nt)



Error correction

Suppose there’s an error

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&&GTACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&&GTCTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

Around average

Below average
k-mer count profile has 
corresponding stretch of 
below-average counts



Error correction
k-mer count profiles when errors are in different parts of the read:

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&&GTACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&&GTCTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACACGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&&GTATTACA:&1
&&&TATTACAC:&1
&&&&ATTACACG:&1
&&&&&TTACACGT:&1
&&&&&&TACACGTC:&1
&&&&&&&ACACGTCT:&2
&&&&&&&&CACGTCTG:&1
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&&GTCTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACGCGTCTGGTCT
GCGTATTA:&8
&CGTATTAC:&8
&&GTATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGT:&1
&&&&&&&&&&&GTCTGGTC:&2
&&&&&&&&&&&&TCTGGTCT:&1

Index

y

Index

y

Index

y



Error correction

k-mer count profile indicates where errors are
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Error correction

Simple algorithm: given a count threshold t:

For each read:
For each k-mer:

If k-mer count < t:
Examine k-mer’s neighbors within certain Hamming/edit distance.  
If neighbor has count ≥ t, replace old k-mer with neighbor.
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Pick a t that lies in the trough 
(the dip) between the peaks



Error correction: results

Corrects 99.2% of the errors in the example 0.1% error dataset

Before After
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From 194K k-mers occurring exactly once to just 355



Error correction: results
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For uncorrected reads, De Bruijn graph size is off the chart

For corrected reads, De Bruijn graph size is near G bound



Error correction

For error correction to work well:

Average coverage should be high enough and k should be set 
so we can distinguish infrequent from frequent k-mers

k-mer neighborhood we explore must be broad enough to find 
frequent neighbors.  Depends on error rate and k.

Data structure for storing k-mer counts should be substantially 
smaller than the De Bruijn graph

Otherwise there’s no point doing error correction separately

Counts don’t have to be 100% accurate; just have to 
distinguish frequent and infrequent


