
CSE 549: Genome Assembly
De Bruijn Graph

All slides in this lecture not marked with “*” courtesy of Ben Langmead.

Real-world assembly methods

Both handle unresolvable repeats by essentially leaving them out

Fragments are contigs (short for contiguous)

Unresolvable repeats break the assembly into fragments

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

a_long_long_long_time

a_long_long_time a_long+++++long_time

Assemble substrings
with Greedy-SCS

Assemble substrings
with OLC or DBG

De Bruijn graph assembly

A formulation conceptually similar to overlapping/SCS, but has some
potentially helpful properties not shared by SCS.

k-mer

“k-mer” is a substring of length k

GGCGATTCATCG
ATTCA 4-mer of S:

S:

All 3-mers of S: GGC
+GCG
++CGA
+++GAT
++++ATT
+++++TTC
++++++TCA
+++++++CAT
++++++++ATC
+++++++++TCG

I’ll use “k-1-mer” to refer to a substring of length k - 1

mer: from Greek meaning “part”

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

As usual, we start with a collection of reads, which are substrings of
the reference genome.

AAB is a k-mer (k = 3). AA is its left k-1-mer, and AB is its right k-1-mer.

AAB

AA AB
L R

3-mer

AAB’s left 2-mer AAB’s right 2-mer

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Take each length-3 input string and split it into two overlapping substrings
of length 2. Call these the left and right 2-mers.

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA

Let 2-mers be nodes in a new graph. Draw a directed edge from each left
2-mer to corresponding right 2-mer:

AA

AB

BA

BB

L R L R L R L R L R

Each edge in this graph
corresponds to a length-3
input string

AAABBBA
take all 3-mers:

form L/R 2-mers:

De Bruijn graph

AA

AB

BA

BB

An edge corresponds to an overlap (of length k-2) between two k-1 mers.
More precisely, it corresponds to a k-mer from the input.

AAA
AAB

ABB

BBB

BBA

De Bruijn graph

AA

AB

BA

BB

If we add one more B to our input string: AAABBBBA, and rebuild the
De Bruijn graph accordingly, we get a multiedge.

AAA
AAB

ABB

BBB

BBA

BBB

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and
multiset of directed edges, E

Otherwise, like a directed graph

a b

c d

V = { a, b, c, d }
E = { (a, b), (a, b), (a, b), (a, c), (c, b) }

Repeated

Node’s indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1

A directed, connected graph is Eulerian if
and only if it has at most 2 semi-balanced
nodes and all other nodes are balanced

Graph is connected if each node can be reached by some other node

Jones and Pevzner section 8.8

AA

AB

BA

BB

Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won’t distinguish Eulerian from semi-Eulerian.)

De Bruijn graph

AAA, AAB, ABB, BBB, BBA

Back to our De Bruijn graph

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
AA

AB

BA

BB L R L R L R L R L R

Is it Eulerian?

Argument 1: AA → AA → AB → BB → BB → BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Yes

De Bruijn graph

A procedure for making a De Bruijn graph
for a genome

Start with an input string: a_long_long_long_time

Take each k mer and split
into left and right k-1 mers

Pick a substring length k: 5

long_

long+ong_

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

a_lo

_lon

a_lo

_lon

long

a_lo

_lon

long

ong_ ong_

ng_l

a_lo

_lon

long

ng_l

g_lo

ong_

a_lo

_lon

long

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

ng_l

g_lo a_lo

_lon

long

ong_

First 8 k-mer additions, k = 5
a_long_long_long_time

De Bruijn graph

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo a_lo

_lon

long

ong_

Finished graph
a_long_long_long_time
Last 5 k-mer additions, k = 5

De Bruijn graph

With perfect sequencing, this procedure always
yields an Eulerian graph. Why?

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced
with one more incoming than outgoing *

* Unless genome is circular

Other nodes are balanced since # times k-1-mer occurs
as a left k-1-mer = # times it occurs as a right k-1-mer

De Bruijn graph

De Bruijn graph implementation
class%DeBruijnGraph:
%%%%"""%A%De%Bruijn%multigraph%built%from%a%collection%of%strings.
%%%%%%%%User%supplies%strings%and%k>mer%length%k.%%Nodes%of%the%De
%%%%%%%%Bruijn%graph%are%k>1>mers%and%edges%join%a%left%k>1>mer%to%a
%%%%%%%%right%k>1>mer.%"""
%
%%%%@staticmethod
%%%%def%chop(st,%k):
%%%%%%%%"""%Chop%a%string%up%into%k%mers%of%given%length%"""
%%%%%%%%for%i%in%xrange(0,%len(st)>(k>1)):%yield%st[i:i+k]
%%%%
%%%%class%Node:
%%%%%%%%"""%Node%in%a%De%Bruijn%graph,%representing%a%k>1%mer%"""
%%%%%%%%def%__init__(self,%km1mer):
%%%%%%%%%%%%self.km1mer%=%km1mer
%%%%%%%%
%%%%%%%%def%__hash__(self):
%%%%%%%%%%%%return%hash(self.km1mer)
%%%%
%%%%def%__init__(self,%strIter,%k):
%%%%%%%%"""%Build%De%Bruijn%multigraph%given%strings%and%k>mer%length%k%"""
%%%%%%%%self.G%=%{}%%%%%#"multimap"from"nodes"to"neighbors
%%%%%%%%self.nodes%=%{}%#"maps"k515mers"to"Node"objects
%%%%%%%%self.k%=%k
%%%%%%%%for%st%in%strIter:
%%%%%%%%%%%%for%kmer%in%self.chop(st,%k):
%%%%%%%%%%%%%%%%km1L,%km1R%=%kmer[:>1],%kmer[1:]
%%%%%%%%%%%%%%%%nodeL,%nodeR%=%None,%None
%%%%%%%%%%%%%%%%if%km1L%in%self.nodes:
%%%%%%%%%%%%%%%%%%%%nodeL%=%self.nodes[km1L]
%%%%%%%%%%%%%%%%else:
%%%%%%%%%%%%%%%%%%%%nodeL%=%self.nodes[km1L]%=%self.Node(km1L)
%%%%%%%%%%%%%%%%if%km1R%in%self.nodes:
%%%%%%%%%%%%%%%%%%%%nodeR%=%self.nodes[km1R]
%%%%%%%%%%%%%%%%else:
%%%%%%%%%%%%%%%%%%%%nodeR%=%self.nodes[km1R]%=%self.Node(km1R)
%%%%%%%%%%%%%%%%self.G.setdefault(nodeL,%[]).append(nodeR)

Chop string into k-mers

For each k-mer, find left
and right k-1-mers

Create corresponding
nodes (if necessary) and
add edge

For Eulerian graph, Eulerian walk can be found in O(| E |) time. | E | is # edges.

Convert graph into one with
Eulerian cycle (add an edge
to make all nodes balanced),
then use this recursive
procedure

#"Make"all"nodes"balanced,"if"not"already

tour%=%[]
#"Pick"arbitrary"node
src%=%g.iterkeys().next()%

def%__visit(n):
while%len(g[n])%>%0:

dst%=%g[n].pop()
__visit(dst)

%%%tour.append(n)
%%%%%%%%
__visit(src)
#"Reverse"order,"omit"repeated"node
tour%=%tour[::>1][:>1]

#"Turn"tour"into"walk,"if"necessary

Insight: If C is a cycle in an
Eulerian graph, then after
removing edges of C,
remaining connected
components are also Eulerian

http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph

Full illustrative De Bruijn graph and Eulerian walk:

http://nbviewer.ipython.org/7237207

>>>+G+=+DeBruijnGraph(["a_long_long_long_time"],+5)
>>>+print+G.eulerianWalkOrCycle()
['a_lo',+'_lon',+'long',+'ong_',+'ng_l',+'g_lo',+
'_lon',+'long',+'ong_',+'ng_l',+'g_lo',+'_lon',+
'long',+'ong_',+'ng_t',+'g_ti',+'_tim',+'time']

Example where Eulerian walk gives correct answer for
small k whereas Greedy-SCS could spuriously collapse
repeat:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph

Another example Eulerian walk:

>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+4)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_thing_turn_turn_turn_there_is_a_season

to
_

o_
e

n_
t

_t
u

_t
h

g_
t

er
y

ry
_

_e
v

y_
t

se
a

ea
s

a_
s

_s
e

ng
_

re
_

e_
i

in
g

ve
r

he
r

er
e

s_
a

_a
_

_i
s

is_
tu
r

ur
n

th
i

th
e

as
o

so
n

ev
e

hi
n

rn
_

Recall: This is not generally possible or tractable in the overlap/SCS
formulation

De Bruijn graph

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

De Bruijn graph

No: graph can have multiple Eulerian walks, only one of
which corresponds to original superstring

BE

EF

AB

BC BY

CD

FA ZA

DA

Right: graph for ZABCDABEFABY, k = 3

Alternative Eulerian walks:

ZA → AB → BE → EF → FA → AB → BC → CD → DA → AB → BY

ZA → AB → BC → CD → DA → AB → BE → EF → FA → AB → BY

These correspond to two edge-disjoint directed
cycles joined by node AB

AB is a repeat: ZABCDABEFABY

De Bruijn graph

Case where k = 4 works:
>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+4)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_thing_turn_turn_turn_there_is_a_season

But k = 3 does not:

>>>+st+=+"to_every_thing_turn_turn_turn_there_is_a_season"
>>>+G+=+DeBruijnGraph([st],+3)
>>>+path+=+G.eulerianWalkOrCycle()
>>>+superstring+=+path[0]+++''.join(map(lambda+x:+x[P1],+path[1:]))
>>>+print+superstring
to_every_turn_turn_thing_turn_there_is_a_season

Due to repeats that are unresolvable at k = 3

De Bruijn graph

This is the first sign that Eulerian walks can’t solve
all our problems

Other signs emerge when we think about how actual
sequencing differs from our idealized construction

BE

EF

AB

BC BY

CD

FA ZA

DA

De Bruijn graph

Gaps in coverage can lead to disconnected graph

Graph for a_long_long_long_time, k = 5:

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph

Gaps in coverage can lead to disconnected graph

Graph for a_long_long_long_time, k = 5 but omitting ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

g_ti

_tim

ng_t

time

Connected components are individually
Eulerian, overall graph is not

De Bruijn graph

Differences in coverage also lead to non-
Eulerian graph

Graph for a_long_long_long_time,
k = 5 but with extra copy of ong_t :

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

Graph has 4 semi-balanced nodes,
isn’t Eulerian

De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph for a_long_long_long_time, k = 5 but with
error that turns a copy of long_ into lxng_

Graph is not connected; largest
component is not Eulerian

ng_l

g_lo a_lo

_lon

lxng

xng_

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph

Casting assembly as Eulerian walk is appealing, but not practical

Even if graph were Eulerian, repeats yield many possible walks

Uneven coverage, sequencing errors, etc make graph non-Eulerian

De Bruijn Superwalk Problem (DBSP) is an improved formulation where
we seek a walk over the De Bruijn graph, where walk contains each
read as a subwalk

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

De Bruijn graph

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex

Uneven coverage foils Eulerian Paths
CTCGATCTAC

ATCTACGGCTA
r1:
r2:

k=4

CTC
TCG

CGA
GAT

ATC
TCT

CTA
TAC
ACG

CGG
GGC

GCT
CTA

= un-balanced vertex

The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an
astronomical number
of possible Eulerian
tours with perfect data.

Adding back
constraints to limit #
of tours leads to a NP-
hard problem.

With imperfect data,
there are usually NO
Eulerian tours

Estimating # of
parallel edges is
usually tricky.

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).

* slide courtesy of Carl Kingsford

k = 50

*

Bursting bubbles

Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn graphs to genome assembly." Nature biotechnology 29.11 (2011): 987-991.

Other useful transformations

collapse nodes u,v if v must follow u and u must precede v

(Kingsford, Schatz, Pop, 2010)

Other useful transformations

Trees in the cycle graph represent subgraphs with
unique solutions, and can therefore be collapsed

Can obtain from G a cycle graph, cycle(G) (green above),
where each vertex is a simple cycle and an edge connects

two cycles if they share a node in the Eulerian graph G

(Kingsford, Schatz, Pop, 2010)

Other useful transformations

“Half-decision” nodes (those with a single predecessor or
successor) can be split into multiple nodes that can often be

further compressed with path-compression

(Kingsford, Schatz, Pop, 2010)

Other useful transformations

Let u→v→w be 3 nodes in a path s.t. u→v has the highest
multiplicity of edges entering v and v→w has the highest

multiplicity of edges laving v. Let cu→v and cv→w be
multiplies of u→v and v→w. If u ≠ w, we can infer that

u→v→w must be part of any Eulerian tour if
cu→v > d+(v) - cv→w where d+(v) is the out-degree of v.

(Kingsford, Schatz, Pop, 2010)

Other useful transformations

Replacing non-decision nodes with edges, along
with the other transformations considered here,
results in a graph containing either just a single

node, or only decision nodes that have both more
than one predecessor and more than on successor.

(Kingsford, Schatz, Pop, 2010)

But first we note that using the De Bruijn graph representation has
other advantages...

In practice, De Bruijn graph-based tools give up on unresolvable
repeats and yield fragmented assemblies, just like OLC tools.

De Bruijn graph

To build a De Bruijn graph in practice:

Pick k. Assume k ≤ shortest read length (k = 30 to 50 is common).

For each read:

For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there
already. Draw an edge from left to right k-1-mer.

d = 6 x 109 reads
n = 100 nt
m = 3 x 109 nt

{

≈ 1 sequencing run

≈ human

Say a sequencer produces
d reads of length n from a
genome of length m

De Bruijn graph

a_long_long_long_time

a_long_long_long,+ng_long_l,+g_long_time

Genome:

Reads:
k-mers:

Pick k = 8

a_long_l+
+_long_lo++
++long_lon+
+++ong_long+
++++ng_long_
+++++g_long_l
++++++_long_lo
+++++++long_lon
++++++++ong_long

g_long_t
+_long_ti
++long_tim
+++ong_time

ng_long_
+g_long_l

g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

Given n (# reads), N (total length of all reads) and k,
and assuming k < length of shortest read:

Exact number of k-mers: N - n (k -1) O(N)

This is also the number of edges, | E |

Number of nodes | V | is at most 2 ∙ | E |, but
typically much smaller due to repeated k-1-mers

De Bruijn graph

g_long_

_long_l _long_t

long_ti

ong_tim

long_lo

ong_lon

ng_long ng_time

a_long_

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers fit in O(1) machine words,
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

De Bruijn graph

Timed De Bruijn graph construction applied to progressively longer
prefixes of lambda phage genome, k = 14

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

0.
20

Length of genome

S
ec

on
ds

 re
qu

ire
d

to
 b

ui
ld

O(N) expectation
appears to work in
practice, at least for this
small example

De Bruijn graph

In typical assembly projects,
average coverage is ~ 30 - 50

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

De Bruijn graph

Recall average coverage: average # reads covering a genome position

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

++++++++++++++++++CTAGGCCCTCAATTTTT
++++++++++++++++CTCTAGGCCCTCAATTTTT
++++++++++++++GGCTCTAGGCCCTCATTTTTT
+++++++++++CTCGGCTCTAGCCCCTCATTTT
++++++++TATCTCGACTCTAGGCCCTCA
++++++++TATCTCGACTCTAGGCC
++++TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x

De Bruijn graph

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use
edge weights instead

ng_l

g_lo a_lo

_lon

long

ong_

ng_t

g_ti

_tim

time

ng_l

g_lo

20

a_lo

_lon

10

long

ong_

30

20

ng_t

10

g_ti

_tim

10

10

20

30

time

10

Weight = # times
k-mer occurs

Using weights, there’s
one weighted edge for
each distinct k-mer

Before: one
edge per k-mer

After: one weighted
edge per distinct k-mer

De Bruijn graph

Say (a) reads are error-free, (b) we have one weighted edge for
each distinct k-mer, and (c) length of genome is G

of nodes and edges both O(N); N is total length of all reads

So # of nodes and edges are also both O(G)

Can’t be more distinct k-mers than there are k-mers in the
genome; likewise for k-1-mers

Combine with the O(N) bound and the # of nodes and
edges are both O(min(N, G))

There’s one node for each distinct k-1-mer, one edge for
each distinct k-mer

De Bruijn graph

With high average coverage, O(G) size bound is advantageous

Size of De Bruijn graph grows
sublinearly when average

coverage is high

10 20 30 40 50

20
00
0

40
00
0

60
00
0

80
00
0

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

 k = 30

Genome = lambda phage (~ 48.5 K nt)

Draw random k-mers until target
average coverage is reached (x axis)

Build De Bruijn graph and total the #
of nodes and edges (y axis)

De Bruijn graph

De Bruijn graph

What De Bruijn graph advantages have we discovered?

Can be built in O(N) expected time, N = total length of reads

With perfect data, graph is O(min(N, G)) space; G = genome length

Compares favorably with overlap graph

Fast overlap graph construction (suffix tree) is O(N + a) time

Space is O(N + a).

a is O(n2)

Note: when average coverage is high, G ≪ N

De Bruijn graph

What did we give up?

Reads are immediately split into shorter k-mers; can’t resolve
repeats as well as overlap graph

Read coherence is lost. Some paths through De Bruijn graph are
inconsistent with respect to input reads.

Only a very specific type of “overlap” is considered, which makes
dealing with errors more complicated, as we’ll see

This is the OLC ⟷ DBG tradeoff

Single most important benefit of De Bruijn graph is the O(min(G, N))
space bound, though we’ll see this comes with large caveats

Error correction

When data is error-free, # nodes, edges in de Bruijn graph is O(min(G, N))

10 20 30 40 50

0e
+0
0
2e
+0
4
4e
+0
4
6e
+0
4
8e
+0
4
1e
+0
5

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

What about data with
sequencing errors?G bound

 k = 30

Error correction
ng_l

g_lo

20

a_lo

_lon

10

long

ong_

30

20

ng_t

10

g_ti

_tim

10

10

20

30

time

10

Take an example we saw (left)
and mutate a k-mer character
to a random other character
with probability 1% (right)

ng_l

g_lo

20

a_lo

_lon

9

lolg

olg_

1

long

ong_

29

onga

ngal

1

atlo

tlon

1

19

ng_t

10

g_ti

_tim

10

_l_n

l_ng

1

1

10

_loo

loog

1

20

27

time

10

ng_l

g_lo

20

a_lo

_lon

9

lolg

olg_

1

long

ong_

29

onga

ngal

1

atlo

tlon

1

19

ng_t

10

g_ti

_tim

10

_l_n

l_ng

1

1

10

_loo

loog

1

20

27

time

10

6 errors result in 10 new nodes
and 6 new weighted edges, all
with weight 1

Error correction

Same experiment as before but
with 5% error added

10 20 30 40 50

0
50
00
0

15
00
00

25
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

0% error

5% error

G bound

Errors wipe out much of the
benefit of the G bound

As more k-mers overlap errors, # nodes, edges approach N

 k = 30

Instead of O(min(G, N)), we have
something more like O(N)

Lambda phage genome

0% error

5% error

G bound

10 20 30 40 50

0
50
00
0

15
00
00

25
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

1% error

Error correction

 k = 30

Lambda phage genome

Error correction

If we can correct sequencing errors up-front, we can prevent De
Bruijn graph from growing much beyond the G bound

How do we correct errors?

Analogy: design a spell checker for a language you’ve never seen
before. How do you come up with suggestions?

Error correction

k-mer count histogram:

x axis is an integer k-mer count, y axis is # distinct k-mers with that count

Right: such a
histogram for 3-mers
of CATCATCATCATCAT:

CAT occurs 5 times

ATC and TCA occur 4 times

Error correction

Say we have error-free sequencing reads drawn from a genome.
The amount of sequencing is such that average coverage = 200.
Let k = 20

~ 6,100 distinct k-mers
occurred exactly 10
times in the input

How would the picture
change for data with
1% error rate?

Hint: errors usually
change high-count k-mer
into low-count k-mer

5 10 15 20 25

0
20
00

40
00

60
00

80
00

10
00
0

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free

Error correction

~ 9.6K distinct k-mers
occur just once

32 distinct k-mers
occur just once

k-mers with errors usually occur fewer times than error-free k-mers

5 10 15 20 25

0
20
00

40
00

60
00

80
00

10
00
0

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error

Error correction
Idea: errors tend to turn frequent k-mers to infrequent k-mers, so
corrections should do the reverse
Say we have a collection of reads where each distinct 8-mer occurs an
average of ~10 times, and we have the following read:

GCGTATTACGCGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

8-mers:

times each 8-mer
occurs in the dataset.
“k-mer count profile”

All 8-mer counts are around
the average, suggesting read
is error-free

(20 nt)

Error correction

Suppose there’s an error

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&>ACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

Read:

Around average

Below average
k-mer count profile has
corresponding stretch of
below-average counts

Error correction
k-mer count profiles when errors are in different parts of the read:

GCGTACTACGCGTCTGGCCT
GCGTACTA:&1
&CGTACTAC:&3
&>ACTACG:&1
&&&TACTACGC:&1
&&&&ACTACGCG:&2
&&&&&CTACGCGT:&1
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACACGTCTGGCCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACA:&1
&&&TATTACAC:&1
&&&&ATTACACG:&1
&&&&&TTACACGT:&1
&&&&&&TACACGTC:&1
&&&&&&&ACACGTCT:&2
&&&&&&&&CACGTCTG:&1
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGC:&11
&&&&&&&&&&>CTGGCC:&9
&&&&&&&&&&&&TCTGGCCT:&8

GCGTATTACGCGTCTGGTCT
GCGTATTA:&8
&CGTATTAC:&8
&>ATTACG:&9
&&&TATTACGC:&9
&&&&ATTACGCG:&9
&&&&&TTACGCGT:&12
&&&&&&TACGCGTC:&9
&&&&&&&ACGCGTCT:&8
&&&&&&&&CGCGTCTG:&10
&&&&&&&&&GCGTCTGG:&10
&&&&&&&&&&CGTCTGGT:&1
&&&&&&&&&&>CTGGTC:&2
&&&&&&&&&&&&TCTGGTCT:&1

Index

y

Index

y

Index

y

Error correction

k-mer count profile indicates where errors are

2 4 6 8 10 12

2
4

6
8

10

k-mer position

co
un
t

These probably
overlap an error

Error correction

Simple algorithm: given a count threshold t:

For each read:
For each k-mer:

If k-mer count < t:
Examine k-mer’s neighbors within certain Hamming/edit distance.
If neighbor has count ≥ t, replace old k-mer with neighbor.

5 10 15 20 25

0
20
00

40
00

60
00

80
00

10
00
0

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error

Pick a t that lies in the trough
(the dip) between the peaks

Error correction: results

Corrects 99.2% of the errors in the example 0.1% error dataset

Before After

0 50 100 150

0
10
00

20
00

30
00

40
00

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error

0 50 100 150
0

10
00

20
00

30
00

40
00

k-mer count

di

st
in

ct
 k

-m
er

s
w

ith
 th

at
 c

ou
nt

Error-free
0.1% error, corrected

From 194K k-mers occurring exactly once to just 355

Error correction: results

5 10 15

60
00
0

10
00
00

14
00
00

Average coverage

de

 B
ru

ijn
 g

ra
ph

 n
od

es
 +

 e
dg

es

Error-free
1% error, corrected
1% error, uncorrected
G bound

For uncorrected reads, De Bruijn graph size is off the chart

For corrected reads, De Bruijn graph size is near G bound

Error correction

For error correction to work well:

Average coverage should be high enough and k should be set
so we can distinguish infrequent from frequent k-mers

k-mer neighborhood we explore must be broad enough to find
frequent neighbors. Depends on error rate and k.

Data structure for storing k-mer counts should be substantially
smaller than the De Bruijn graph

Otherwise there’s no point doing error correction separately

Counts don’t have to be 100% accurate; just have to
distinguish frequent and infrequent

