
CSE 549: Hidden Markov Models 
(in prep for ab initio gene finding)

All slides marked * are  
courtesy of Carl Kingsford



A Basic Probability Refresher
Ω — The sample space (set of all possible outcomes)

X — Random variable; measurable function from Ω → E

E — An event; a subset of the sample space

Pr(E) — Probability of the event E

e.g. all possible values for a roll of a die {1,2,3,4,5,6}, need not be finite 

e.g. all even rolls of a die {2,4,6} 

e.g. X = value on the upward face of the die

e.g. Pr(X is even) = Pr(X ∈ {2,4,6}) = |{2,4,6}| / |{1,2,3,4,5,6}| = 0.5

In a discrete, finite, sample space, if all outcomes are equally likely, 
one can think of this as |E| / |Ω|



Probabilities

Pr(A,B) = Pr(A⋂B) = Pr(A|B) Pr(B)

A B

Joint Probability



Probabilities

A B

Probability of Union of Two Events

Pr(A⋃B) = Pr(A) + Pr(B) - Pr(A,B)



Probabilities

A B

Conditional Probability

Pr(A|B) = Pr(A,B) / Pr(B)



Independence

X ⊥Y ⟺ Pr(X,Y) = Pr(X) Pr(Y)

X ⊥Y | Z ⟺ Pr(X,Y | Z) = Pr(X | Z) Pr(Y | Z)

Independent Events

Conditionally Independent Events



Checking a Casino 

Heads/Tails: ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

? Suppose either a fair or biased 
coin was used to generate a 
sequence of heads & tails. But 
we don’t know which type of 
coin was actual used.

How could we guess which coin was more likely?
*



Compute the Probability of the  
Observed Sequence

Pr(x | Fair) = 

Pr(x | Biased) = 

X = ↑ ↑ ↓ ↓ ↓ ↓ ↑

Fair coin:  Pr(Heads) = 0.5
Biased coin: Pr(Heads) = 0.75

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.75 0.75 0.25 0.25 0.25 0.25 0.75

= 0.57 = 0.0078125

= 0.001647949

× × × × × ×

× × × × × ×

log2 = 
Pr(x | Fair) 

Pr(x | Biased) 
0.0078

0.0016
= 2.245

The log-odds score:
> 0. Hence “Fair” is a 
better guess.log2 

*



(1st order) Markov Chain

H T0.8

0.2

0.2

0.8

What if the coin tosses weren’t independent?
e.g. coin tended to have “runs” of the same value.

Discrete, random process where the next state depends
only on the current state. 

Markov Chain describing a “hot” coin

Total transition probability at each state is unity



(1st order) Markov Chain

H T0.8

0.2

0.2

0.8

What if the coin tosses weren’t independent?
e.g. coin tended to have “runs” of the same value.

Discrete, random process where the next state depends
only on the current state. 

Pr(x1, x2, …, xn) = Pr(xn | x1, x2, …, xn-1) Pr(xn-1| x1, x2, …, xn-2) …  
            Pr(x2 | x1) Pr(x1)

Pr(x1, x2, …, xn) = Pr(xn | xn-1) Pr(xn-1| xn-2) … Pr(x2 | x1) Pr(x1)

Factorization Always True

Factorization True if process is Markovian



(1st order) Markov Chain

H T0.8

0.2

0.2

0.8

Markov Chain describing a “hot” coin

x=HTTTTTHHHHTTTHHHHH

Can define the joint probability for a sequence of 
observations:

Pr(x) = Pr(x1, x2, …, xn) = Pr(x1) ∏ Pr(xt | xt-1)
t=2

n

e.g. above, if we were equally likely to start at H or T

Pr(x) = 0.5 x 0.2 x 0.8 x 0.8 x 0.8 x 0.8 x 0.2 x 0.8 x 0.8 x 0.8 x 0.2 x 0.8 x 0.8 x 0.2 x 0.8 x 0.8 x 0.8 x 0.8

≈ .000043980465111040



>From mvs Fri Nov 16 17:11 EST 1984 remote from alice
It looks like Reagan is going to say? Ummm... Oh yes, I was looking for. I'm so glad I 
remembered it. Yeah, what I have wondered if I had committed a crime. Don't eat with your 
assessment of Reagon and Mondale. Up your nose with a guy from a firm that specifically 
researches the teen-age market. As a friend of mine would say, "It really doesn't matter"... It 
looks like Reagan is holding back the arms of the American eating public have changed 
dramatically, and it got pretty boring after about 300 games.

People, having a much larger number of varieties, and are very different from what one can find 
in Chinatowns across the country (things like pork buns, steamed dumplings, etc.) They can be 
cheap, being sold for around 30 to 75 cents apiece (depending on size), are generally not greasy, 
can be adequately explained by stupidity. Singles have felt insecure since we came down from 
the Conservative world at large. But Chuqui is the way it happened and the prices are VERY 
reasonable.

Can anyone think of myself as a third sex. Yes, I am expected to have. People often get used to 
me knowing these things and then a cover is placed over all of them. Along the side of the $$ are 
spent by (or at least for ) the girls. You can't settle the issue. It seems I've forgotten what it is, but 
I don't. I know about violence against women, and I really doubt they will ever join together into 
a large number of jokes. It showed Adam, just after being created. He has a modem and an 
autodial routine. He calls my number 1440 times a day. So I will conclude by saying that I can 
well understand that she might soon have the time, it makes sense, again, to get the gist of my 
argument, I was in that (though it's a Republican administration).
_-_-_-_-Mark

Mark V Shaney

• "I spent an interesting evening recently with a grain of salt."
• "I hope that there are sour apples in every bushel."

(Wikipedia, 2011)

Developed by Bruce Ellis & Rob Pike in the 1980s

Markov Chain Detour

One appealing property 
of Markov Chains is that 

they are generative models

Walk the model and take 
transitions proportional to 

their probabilities — you get 
a stochastic output  

that is consistent with 
your model!

*



Back to the casino: What if the casino can 
switch coins?

Fair coin:  Pr(Heads) = 0.5
Biased coin: Pr(Heads) = 0.75
Probability of switching coins = 0.1

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

*

Looks like a Markov chain, but different.  The “state” (i.e. 
“fair” or “biased”) is not observed. However, we do 
observe output that depends, probabilistically, on the 
states (e.g. heads or tails). This is a Hidden Markov 
Model (HMM).

0.90.9



Typically, we’re interested in questions 
involving these hidden states

Fair coin:  Pr(Heads) = 0.5
Biased coin: Pr(Heads) = 0.75
Probability of switching coins = 0.1

How could we guess which coin was more likely at each position?

How can we compute the probability of the entire sequence?

*

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

0.90.9



Fair coin:  Pr(Heads) = 0.5
Biased coin: Pr(Heads) = 0.75
Probability of switching coins = 0.1

How can we compute the probability of the entire sequence?

*

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

0.90.9

If we knew the set of hidden states, computing this 
would be easy!



What if the casino switches coins?
How can we compute the probability of the entire sequence?

*

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi → πi+1) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1 0.10.5

result of flip
type of coin

Pr(result | state)
Pr(statex at t | statey at t-1)



What if the casino switches coins?
How can we compute the probability of the entire sequence?

*

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi → πi+1) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1 0.10.1

result of flip
type of coin

Pr(result | state)
Pr(statex at t | statey at t-1)

Pr(start with fair coin)



What if the casino switches coins?
How can we compute the probability of the entire sequence?

*

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB
Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi-1 → πi) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.9 0.90.5

result of flip

type of coin

Pr(result | state)

Pr(statex at t | statey at t-1)

2.50e-01 
  1.13e-01  

  5.06e-02 
     3.08e-03 
                 2.56e-03 
                           1.73e-03 

                                                                3.89e-04 
                                                  1.95e-05 

                                                                                          8.76e-06                    
                                                                                     3.94e-06

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9



What if the casino switches coins?
How can we compute the probability of the entire sequence?

*

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB
Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi → πi+1) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1 0.10.1

result of flip

type of coin

Pr(result | state)

Pr(statex at t | statey at t-1) Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

But, remember, we don’t observe π in practice



What if the casino switches coins?
How can we compute the probability of the entire sequence?

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB
Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi → πi+1) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1 0.10.1

result of flip

type of coin

Pr(result | state)

Pr(statex at t | statey at t-1) Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

But, remember, we don’t observe π in practice

We’ll return to how to tackle this later.   

First, how is this related to Biology?



What does this have to do with biology?

atg gat ggg agc aga tca gat cag atc agg gac gat aga cga tag tga

Now:
How likely is it that this is a gene?
Which parts are the start, middle and end?

Start
Generator

Middle of 
Gene Generator

End
Generator

Before: 
How likely is it that this sequence was generated by a fair coin?
Which parts were generated by a biased coin?

*



Eukaryotic Genes & Exon Splicing

ATG TAG

ATG TAGintron intron intronexonexon exon exon

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

AUG UAG

Exons are concatenated together

Introns are 
thrown away

This spliced RNA is what is 
translated into a protein.

mRNA:

*



Eukaryotic Genes & Exon Splicing

ATG TAGintron intron intronexonexon exon exon

Given this

Recover this

Under what sequence of “states” (exon, intron, start 
codon etc.) is the observed sequence of nucleotides 
maximized?



Hidden Markov Model

...

...

p1 p2 p3 p4 pn

x1 x2 x3 x4 xn

p = { p1, p2, ..., pn } is a sequence of states (AKA a path).  Each pi takes 
a value from set Q.  We do not observe p.

x = { x1, x2, ..., xn } is a sequence of emissions.  Each xi takes a value 
from set ∑.  We do observe x.

Steps 1 through n

Trellis diagram

+ slide courtesy of Ben Langmead

(Think of this picture)



Hidden Markov Model

...

...

p1 p2 p3 p4 pn

x1 x2 x3 x4 xn

Like for Markov chains, edges capture conditional independence:

x2 is conditionally independent of everything else given p2

p4 is conditionally independent of everything else given p3

Probability of being in a particular state at step i is known once we know 
what state we were in at step i-1.  Probability of seeing a particular emission 
at step i is known once we know what state we were in at step i.

+ slide courtesy of Ben Langmead



Formal Definition of a HMM
∑ = alphabet of symbols.

Q = set of states.

A = an |Q| x |Q| matrix where entry (k,l) is the probability of moving from 
state k to state l.

E = a |Q| x |∑| matrix, where entry (k,b) is the probability of emitting b when 
in state k.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Probability of 
going from state 
5 to state 7

A =

A C G T

1

2

3

4

5

6

7

Probability of 
emitting T when 
in state 4.E =

*



Constraints on A and E

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Probability of 
going from state 
5 to state 7

A C G T

1

2

3

4

5

6

7

Probability of 
emitting T when 
in state 4.

A = E =

Sum of the # in each row must be 1.

*



The Decoding Problem
Given x and π, we can compute:

• Pr(x | π): product of Pr(xi | πi)

• Pr(π): product of Pr(πi → πi+1) 

• Pr(x, π): product of all the Pr(xi | πi) and Pr(πi → πi+1)

But they are “hidden” Markov models because π is unknown.

Pr(x,⇡) = Pr(⇡0 ! ⇡1)
nY

i=1

Pr(xi | ⇡i) Pr(⇡i ! ⇡i+1)

Decoding Problem: Given a sequence x1,x2,x3,…xn generated 
by an HMM (∑, Q, A, E), find a path π that maximizes Pr(x, π).

*



The Viterbi Algorithm to Find Best Path

A[a, k] := the probability of the best path for x1...xk that ends at state a.

1 2 3 4 5 6 7

1

2

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

A[a, k] = the probability of the best path for x1...xk-1 that goes to some 
state b times probability of a transition from b to a, and then the 
probability to output xk from state a. 

1 2 3 4 5 6 7

Fair

Biased

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q
b

= k

a

*



Viterbi DP Recurrence

A[a, k] = max

b2Q
{A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)}

A[a, 1] = Pr(⇡1 = a)⇥ Pr(x1 | ⇡1 = a)

Over all possible 
previous states.

Best path for 
x1..xk ending 

in state b

Probability of 
transitioning 

from state b to 
state a

Probability of 
outputting xk 

given that the kth 
state is a.

1 2 3 4 5 6 7

Fair

Biased

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q
b

= k

a

Base case:

Probability 
that the first 

state is a

Probability of 
emitting x1 

given the first 
state is a. *

Generally, our model 
can include an “initial”/

starting distribution



Which Cells Do We Depend On?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=
*



Order to Fill in the Matrix:

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=
*



Where’s the answer?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=

max value in 
these red cells

*



Trellis Graph

x1 x2 x3 x4
x5 x6

Q

B

F F F F F F

B B B B B

x1
x2

x3
x4

x5
x6

Q n

Q

H T H H H T

S E

x = 

The trellis graph “unfolds” the states of the HMM 
over (discrete) time.



Trellis Graph

Finding the maximum probability path through the 
trellis graph can be accomplished efficiently with the 
Viterbi algorithm — think back to lecture 3

x1 x2 x3 x4
x5 x6

Q

B

F F F F F F

B B B B B

x1
x2

x3
x4

x5
x6

Q n

Q

H T H H H T

S E

x = 



DAG View of Dynamic Programming
The formulation of a DP as traversal of a DAG is a very powerful 
framework for thinking about and implementing different DPs.

Huang, Liang. "Dynamic programming algorithms in semiring and hypergraph frameworks." Qualification Exam Report (2006): 1-19.



Trellis Graph

When we want to compute the prob. 
of the best path ending here, we already 

have the prob. of the best path at all  
predecessors, as well as the conditional 

prob. of each incoming edge

x1 x2 x3 x4
x5 x6

Q

B

F F F F F F

B B B B B

x1
x2

x3
x4

x5
x6

Q n

Q

H T H H H T

S E

x = 



Graph View of  Viterbi

B

F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

Pr(S→
B, H | B

)

Pr(S→F, H | F)

Pr(B→B, T | B)

Pr(B→F, T | F)

F



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

0.5 * 0
.75

0.5 * 0.5

0.375 * 0.9  * 0.25

0.2
5 *

 0.
1  

* 0
.25



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

0.5 * 0
.75

0.5 * 0.5

0.2
5 *

 0.
1  

* 0
.25

max( 0.25 * 0.1  * 0.25, 
             0.375 * 0.9  * 0.25)

0.375 * 0.9  * 0.25

.0
84

37
5



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

0.5 * 0
.75

0.5 * 0.5

0.375 * 0.1  * 0.5

.1125
0.25 * 0.9  * 0.5

max( 0.375 * 0.1  * 0.5, 
      0.25 * 0.9  * 0.5)

.084375



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

0.5 * 0
.75

0.5 * 0.5

.084375

.1125



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.084375 * 0.9 * 0.75

.11
25

 * 0
.1 

* 0
.75



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.084375 * 0.9 * 0.75

.11
25

 * 0
.1 

* 0
.75



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.084375 * 0.1 * 0.5

.1125 * 0.9 * 0.5

.05695 



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.084375 * 0.1 * 0.5

.1125 * 0.9 * 0.5

.05695 



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 

.050625



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 * 0.9 * 0.75

.05
06

3 *
 0.

1 *
 0.

75



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 * 0.9 * 0.75

.05
06

3 *
 0.

1 *
 0.

75



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.03844



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 * 0.1 * 0.5

.05063 * 0.9 * 0.5

.03844



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.05695 * 0.1 * 0.5

.05063 * 0.9 * 0.5

.03844



Graph View of  Viterbi

B

F F F F F F

B B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835

.03844



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835

.03844 * 0.9 * 0.75

.22
78

 * 0
.1 

* 0
.75 B

F



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835

.03844 * 0.9 * 0.75

.22
78

 * 0
.1 

* 0
.75 B

F



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835

B

F

.025947



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835 * 0.9 * 0.5

B

F

.025947

.03844 * 0.1 * 0.5



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

.0227835 * 0.9 * 0.5

B

F

.025947

.03844 * 0.1 * 0.5



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F

.025947

.010253



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F

.025947 * 0.9 * 0.25

.010253

.01
02

53
 * 0

.1 
* 0

.25



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F

.025947 * 0.9 * 0.25

.010253

.01
02

53
 * 0

.1 
* 0

.25



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F
.010253 * 0.9 * 0.5

.005838075

.025947 * 0.1 * 0.5



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F
.010253 * 0.9 * 0.5

.005838075

.025947 * 0.1 * 0.5



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F

.005838075

.00461385



Graph View of  Viterbi

B

F F F F F

B B B B

H T H H H T

S E

x = 

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

B

F

.005838075

.00461385

In this case, transitions to the end state (emitting no symbol), 
won’t matter
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We can “trace back” our path to determine the hidden 
states taken on when traversing the optimal path.
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In this case, the path was simple — implying a biased 
coin the entire time.
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Note that in practice, esp. with long sequences, the  
absolute prob. of the best path may be very small.



Running Time

• # of subproblems = O(n|Q|), where n is the length of the sequence.

• Time to solve a subproblem = O(|Q|)

• Total running time: O(n|Q|2)

*



Using Logs

Typically,  we take the log of the probabilities to avoid multiplying a lot 
of terms:

log(A[a, k]) = max

b2Q
{log(A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a))}

= max

b2Q
{log(A[b, k � 1]) + log(Pr(b! a)) + log(Pr(xk | ⇡k = a))}

Why do we want to avoid multiplying lots of terms?

log(ab) = log(a) + log(b)Remember:

Multiplying leads to very small numbers:
0.1 x 0.1 x 0.1 x 0.1 x 0.1 = 0.00001

This can lead to underflow.
Taking logs and adding keeps numbers bigger. *



Estimating HMM Parameters

x

(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 . . . x

(1)
n

⇡

(1)
1 ⇡

(1)
2 ⇡

(1)
3 ⇡

(1)
4 ⇡

(1)
5 . . . ⇡

(1)
n

x

(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 . . . x

(2)
n

⇡

(2)
1 ⇡

(2)
2 ⇡

(2)
3 ⇡

(2)
4 ⇡

(2)
5 . . . ⇡

(2)
n

(x(1),π(1)) = 

(x(2),π(2)) = 

Training examples 
where outputs and 
paths are known.

Pr(a! b) =
AabP

q2Q Aaq

# of times transition  
a → b is observed.

# of times x was 
observed to be 
output from state a.  

*

Pr(x | a) = E

xaP
x

02⌃ E

x

0
a



Pseudocounts

Pr(a! b) =
AabP

q2Q Aaq
Pr(x | a) =

E

xaP
x2⌃ E

xq

# of times transition  
a → b is observed.

# of times x was 
observed to be 
output from state a.  

What if a transition or emission is never observed in the training data? 
⇒ 0 probability

Meaning that if we observe an example with that transition or emission in the real 
world, we will give it 0 probability.

But it’s unlikely that our training set will be large enough to observe every possible 
transition.

Hence: we take Aab = (#times a → b was observed) + 1
Similarly for Exa.

“pseudocount”

*



Viterbi Training

• Problem: typically, in the real would we only have examples of the 
output x, and we don’t know the paths π. 

1. Choose a random set of parameters.
2. Repeat:

1. Find the best paths.
2. Use those paths to estimate new parameters.

This is a local search algorithm.

It’s also an example of a “Gibbs sampling” style algorithm.

The Baum-Welch algorithm is similar, but doesn’t commit to a single 
best path for each example.  (basically EM for HMM training)

Viterbi Training Algorithm:

*



Some probabilities in which we are 
interested

Pr(x) =
X

⇡

Pr(x, ⇡)

Pr(x,⇡i = a) =
X

⇡:⇡i = a

Pr(x,⇡)

What is the probability of observing a string x under the assumed HMM?

What is the probability of observing x using a path where the ith state is a?

What is the probability that the ith state is a?

Pr(⇡i = a|x) =
Pr(x,⇡i = a)

Pr(x)
*



A[a, k] = max

b2Q
{A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)}

How do we compute this:

We can compute the probability of emitting x1,...,xk using any path that 
ends in a: 

Recall the recurrence to compute best path for x1...xk that ends at state a:

F [a, k] =
X

b2Q

F [b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)

= Pr(x1, . . . , xi, ⇡i = a) Pr(xi+1, . . . , xn | ⇡i = a)Pr(x,⇡k = a)

*



The Forward Algorithm

We can compute the probability of emitting x1,...,xk using any path that 
ends in a: 

F [a, k] =
X

b2Q

F [b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)

The forward algorithm also allows us to solve the 
“Evaluation Problem”.

Evaluation Problem:
Given an HMM λ = (∑, Q, A, E) and an observation x

Find Pr(x | λ ) — the prob. of the observations under 
the model *



The Forward Algorithm

x1 x2 x3 x4

a

x5 x6

Q

F[a,4]

Computes the total probability 
of all the paths of length k 

ending in state a. 

Still need to compute the 
probability of paths leaving a 

and going to the end.

*



The Backward Algorithm

B[a, k] =
X

b2Q

B[b, k + 1]⇥ Pr(a! b)⇥ Pr(xk+1 | ⇡k+1 = b)

Prob for  
xk+1..xn 

starting in 
state b

Probability 
going from 
state a to b

Probability of emitting 
xk+1 given that the next 

state is b.

The same idea as the forward algorithm, we just start from the end of the 
input string and work towards the beginning:

B[a,k] = “the probability of generating string xk+1,...,xn starting from state b”

*



The Forward-Backward Algorithm

Pr(⇡i = a | x) =
Pr(x,⇡i = k)

Pr(x)
=

F [a, i] · B[a, i]
Pr(x)

a

F[a,i] B[a,i]

*



The Forward-Backward Algorithm

Pr(⇡i = a | x) =
Pr(x,⇡i = k)

Pr(x)
=

F [a, i] · B[a, i]
Pr(x)

a

F[a,i] B[a,i]

*

This works because F[a,i] is independent of B[a,i], 
given that we are in state a at time i (the Markovian 
assumption).



Alternative Training (Baum-Welch)

notation inspired by: https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

✓ = (A,E,⇡) Initialize transition, emission and initial state distribution “randomly”
Y Training data such that Yt  represents the vector of observations at step t

While not converged:

Run the forward algorithm

Run the backward algorithm

�i (t) = Pr
�
Xt = i | Y, ✓

�
=

F [i, t] ·B [i, t]
P|Q|

j=1 F [j, t] ·B [j, t]

Compute 𝛾, the probability of being in each hidden state at each time:

⇠ij (t) = Pr
�
Xt = i,Xt+1 = j | Y, ✓

�
=

F [i, t] ·A[i, j] ·B [j, t+ 1] · E [j, yt+1]
P|Q|

i=1

P|Q|
j=1 F [i, t] ·A[i, j] ·B [j, t+ 1] · E [j, yt+1]

Compute ξ, the prob of being in state i at step t, j at t+1 and producing the observed output at t+1

update parameters
⇡⇤
i = �i (1)

A⇤ [i, j] =

PT�1
t=1 ⇠ij (t)PT�1
t=1 �i (t)

E⇤ [i, vk] =

PT
t=1 1yt=vk�i (t)PT

t=1 �i (t)

Use these updated parameter estimates in the next iteration of the algo.

https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm


Baum-Welch

Tries to find the maximum likelihood parameters given 
observations

Application of the EM algorithm (which we’ll see again in 
RNA-seq quantification) to training of HMMs

Not guaranteed to find a global maximum

Can overfit the data i.e., possible that P(Y | θ*) > P(Y | θreal)

However, it is an effective and widely-used algorithm for HMM 
training.  It often works very well in practice (given sufficient, 
unbiased, training data)



Recap
• Hidden Markov Model (HMM) model the generation of sequences of 

symbols.

• They are governed by a symbol alphabet (∑), a set of states (Q), a set of 
transition probabilities A, and a set of emission probabilities for each 
state (E).

• Given a string and an HMM, we can compute:

The most probable path the HMM took to generate the sequence (Viterbi).

The probability that the HMM was in a particular state at a given step (forward-
backward algorithm).

• Algorithms are based on dynamic programming.

• Finding good parameters is a much harder problem.  
The Baum-Welch algorithm is an oft-used heuristic algorithm.

*


