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Finding Genes

We'll break gene finding methods into 3 main categories.

ab initio comparative combined / extrinsic

latin — “from the beginning” make use of knowledge Make use of experimental

w/o experimental evidence across species evidence (e.g. RNA-seq)

a known human gene is

strong evidence for a Eviieisicis Migiligiis

transcribed regions

based on predictive modeling Chimp gene
how well do genomic many “housekeeping” genes  Gene structure extracted
seguences score under are incredibly similar across  from evidence (potentially
our “gene model”? highly divergent species combined with model

predictions)



Typical Approaches to Annotation are "Hybrid”™ Methods

Refine with homological &
xperimental evidence

Combine predictions of

Considér ab initio predictions |
many different tools

Manually curate the most promising
results



Hybrid Gene Finding “Pipelines”

| ab initio
comparative |
de novo (experimental)

(A) ab initio gene finding using a selection of the following software tools: GeneMarkHMM, FGENESH, Augustus, and SNAP, GlimmerHMM.
B) protein homology detection and intreon resolution using the GeneWise software and the unirefQo non-redundant protein database.
( C) alignment of known ESTs, full-length cDNAs, and most recently, Trinity RNA-Seq assemblies to the genome.

D) PASA alignment assemblies based on overlapping transeript alignments from step ( C)

E) use of EVidenceModeler (EVM) to compute weighted consensus gene structure annotations based on the above (A, B, C, D)
F) use of PASA to update the EVM consensus predictions, adding UTR annotations and models for alternatively spliced isoforms (leveraging D and E).
(G) limited manual refinement of genome annolations (F) using Argo or Apollo

evidence combiners |
manual curation

http://pasa.sourceforge.net



What is “experimental” data”

There are many ways we can obtain “experimental”
evidence of a gene.

Seqguencing of protein product (mass spec.)

Expensive & slow, but provides direct evidence of
protein coding genes (reverse translation)

Expressed Sequence Tags (EST)

Targeted sequencing (typically Sanger
seqguencing) of expressed transcripts

RNA-Seq

High throughput sequencing of the “transcriptome”



RNA-Seq — Sequencing Transcripts
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Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): R22.



How Is RNA-seq Useful?
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RNA-Seq reads come from a spliced transcript — it we can map them
back to the genome, they give us evidence of transcribed regions.

Human genome contains > 14,000 pseudogenes [Pei et al. Genome
Biology 2012]

Image from: Shin, Heesun, et al. "Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without
Globin Depletion." PloS one 9.3 (2014): €91041.




RNA-seqg Alignment is Hard

RNA-Seq reads

Align reads to
genome

RNA-seq reads can span
— = e exon boundares. Thus,
= o—0 CIc _-contiguous regions of the
- O = CO—0 read may map kilobases apart

o & o o when aligning to the genome.

Genome

Improving the quality, sensitivity and speed of “spliced” alignment is
still an active area of research. How can we be confident in a spliced-
alignment when only a small portion of a read maps to an exon”

Haas, Brian J., and Michael C. Zody. "Advancing RNA-seq analysis." Nature biotechnology 28.5 (2010): 421.



RNA-seq Assembly Is Harder

RNA-Seq reads
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Does Experimental Evidence Help?

There are many uses of RNA-seq apart from helping
ab initio gene prediction.

Nonetheless, such evidence may be a powerful tool
INn helping us predict the existence of new genes.
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Unsupervised Gene Finding w/o Experimental Evidence
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Figure 2. The step-wise diagram of the iterative unsupervised parameterization of HSMM implemented in GeneMark.hmm ES-3.0.

Start with heuristic / uninformative parameters and train via
the Viterbi training algorithm we discussed previously.

Lomsadze, Alexandre, et al. "Gene identification in novel eukaryotic genomes by self-training algorithm." Nucleic Acids Research 33.20 (2005): 6494-6506.



Learning Feature Length Distributions

D. mel exon lengths

C. intestinalis intron lengths

Lomsadze et al. 2005
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Unsupervised Training Competes With Supervised Training

Table 1. Values of several categories of sensitivity and specificity (Sn/Sp) and (Sn+Sp)/2 characterizing the accuracy of gene predictions produced for the group of
‘well-studied’ genomes by the cukaryotic GeneMark.hmm with models derived by both unsupervised and supervised training

A.thaliana C.elegans D.melanogaster

Unsupervised Supervised Unsupervised Supervised Unsupervised Supervised
Nucleotide 91.7 97.2 99.1 97.8 97.9 98.1

94.8 96.3 943 95.8 3.6 96.4 955 96.7 929 95.4 93.1 95.6
Internal exons 91.2 91.2 94.0 90.9 91.3 87.2

37 8 89.5 88.5 89.9 913 92.7 90.8 90.9 29 7 90.5 90.2 88.7
Initiation sites 80.1 80.1 85.8 79.2 83.9 834

76.5 78.3 21.9 76.0 68.9 77.4 674 733 735 78.7 743 78.9
Aemeination £iee 87.5 gs3 883 835 951 g5 940 geg 892 g3 895 842

83.1 78.6 753 79.6 77.2 78.8
Donor sites 94.0 94.0 96.2 93.7 92.8 91.3

903 92.2 20,8 91.9 90.8 93.5 914 92.6 872 90.0 $9.1 90.2
Acceptor sites 94.0 93.6 97.3 95.2 93.0 9.5

902 92.1 292 91.4 oL6 94.5 928 94.0 370 90.0 87.9 89.2

Boldface highlights the higher value in comparison of unsupervised and supervised modes (ES-3.0 versus E-3.0).

Lomsadze et al. 2005



Learning Site-Specific Features
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Incorporating Experimental Evidence
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Lomsadze, Alexandre, Paul D. Burns, and Mark Borodovsky. “Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding
algorithm." Nucleic acids research (2014): gku557.



Incorporating Experimental Evidence
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Figure 3. Selection of elements of trammg set in GeneMark-E1 for the next iteration. The new traming set of protein-coding regions 1s comprised from
exons witl at leasl one ‘anchored sphice sile” as well as long exons predicted af iniiio (=500 nt),

Lomsadze et al. 2014



Effect of Using Spliced-Alignments

Table 4. Assessment of gene prediction accuracy of GeneMark-ES (ES) and GeneMark-ET (E1') gene finders using unsupervised (genomic based) and
semi-supervised (genomic and transcriptomic based) tramning, respectively

. melanogaster A aegypti A. gambiae A. stephensi Culex g
ES ET ES ET ES ET ES ET ES ET
Internal exon Sn 80.7 87.2 (9.3 91.7 7.0 80.4 827 85.1 T4 81.8
Sp 76.9 82.9 6.7 75.9 70.3 78.6 76.5 7740 54.7 65.7
Intron Sn 32.6 84.8 67.9 89.6 77.6 31.0 85.2 88.1 70.2 s1.1
Sp 75.3 79.2 64.6 80.3 734 80.5 70.4 81.7 598 72.7
Donor site Sn 35.3 87.0 74.6 92.8 3l.9 84.1 a2 904 74.3 83.5
Sp 84.5 86.5 76.2 86.8 829 88.1 87.3 88.1 743 80.7
Acceplor sile Sn 36.2 88.2 74.3 94.1 33.0 86.0 90.7 9238 33.9 88.7
Sp R5.5 87.0 79.10) 89.6 R3.6 88.9 R7.7 89.2 78.0 84.6
Imtialion site Sn 71.0 75.1 62.5 79.6 63.8 68.1 63.0 66.9 60.8 76.7
Sp 83.1 81.5 77.1 839 80.0 79.9 726 76.3 774 85.7
Termunalion site Sn 77.3 84.2 651 88.0 729 31.0 830 84.9 78.9 832.8
Sp 90.7 90.0 g1.2 96.0 897 91.6 8A.S 92.4 89.3 90.9
Nucleolde Sn 1.5 92.1 &7.0 98.1 014 02.9 97.0 97.3 93.9 94,4
Sp 98.3 97.4 Q5.2 96.2 98.6 08.8 Q8.S 98.7 92.0 93.0
Gene Sn 57.9 63.6 40.3 66.7 43.8 53.1 432 48.6 46.1 65.0
Sp 573 61.0 42 A 64.3 44.0 53.0 109 47.0 443 6h2.6
Partial gene Sn 59.9 67.2 41.2 69.0 46.2 56.0 45.6 54.3 438.1 66.1
Sp 59.3 64.5 424 66.5 46.4 55.8 44 9 52.4 46.1 63.6

Bold [ont lughhights the lugher accuracy value i a given category and given species. Parlial gene level accuracy 1s computed without takmg mlo account
a difference in annotation and prediction of translation starts.
Spliced alignments lor GeneMark-ET were produced by UnSplicer.

Lomsadze et al. 2014



Effect of Using Spliced-Alignments

Table 4. Assessment of gene prediction accuracy of GeneMark-ES (ES) and GeneMark-ET (E1') gene finders using unsupervised (genomic based) and
semi-supervised (genomic and transcriptomic based) tramning, respectively

D). melanogaster A aegypti A. gambiae A. stephensi Culex g
ES ET ES ET ES ET ES ET ES ET
Internal exon Sn 80.7 87.2 (9.3 91.7 710 80.4 827 85.1 74 81.8
Sp 76.9 82.9 607 75.9 70.3 78.6 76.8 7740 54.7 65.7
Intron Sn 32.6 84.8 67.9 89.6 77.6 81.0 835.2 88.1 70.2 81.1
Sp 75.3 79.2 64.6 80.3 734 80.5 70.4 81.7 59.8 72.7
Donor sile Sn 35.3 87.0 74.6 92.8 3.9 84.1 882 904 74.3 83.5
Sp 84.5 86.5 76.2 86.8 829 88.1 87.3 88.1 743 80.7
Acceplor sile Sn 36.2 88.2 74.3 94.1 33.0 86.0 90.7 9238 33.9 88.7
Sp R5.5 87.0 79.0) R9.6 83.6 88.9 R7.7 89.2 78.0 84.6
[nitialion site Sn 71.0 75.1 62.3 79.6 63.8 68.1 63.0 66.9 60.3 76.7
Sp 83.1 81.5 77.1 839 80.0 709 716 76.3 774 85.7
Termunalion site Sn 77.3 84.2 63,1 88.0 72.9 81.0 83.0 84.9 73.9 82.8
Sp 90.7 90.0 g1.2 96.0 89.7 91.6 86.5 924 893 90.9
Nucleotde Sn 91.5 92.1 &7.0 98.1 91.4 92.9 97.0 97.3 93.9 04.4
Sp 98.3 97.4 Q5.2 96.2 98.6 98.8 Q8.8 98.7 92.0 93.0
Gene Sn 579 63.6 40.3 66.7 43.8 53.1 432 48.6 46.1 65.0
Sp 57.3 61.0 42 6 64.3 44.0 53.0 9.9 47.0 443 (2.6
Partial gene Sn 59.9 Fiv 41.2 69.0 46.2 56.0 45.6 54.3 48.1 66.1
Sp 59.3 64.5 426 66.5 46.4 55.8 449 524 46.1 63.6

Bold [ont tughhghls the lugher accuracy value ina given category and given species. Partial gene level accuracy 1s computed without laking 1nlo account
a difference in annotation and prediction of translation starts.
Spliced alignments lor GeneMark-ET were produced by UnSplicer.

Lomsadze et al. 2014



Effect of Using Spliced-Alignments
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Figure 4. Observed dynamics of change 1in iterations of the mean of Sn and Sp internal exon preciction values for the GeneMark-ET and GeneMark-ES
algorithms i cases of Drosoplula melunogasier (A) and Anopheles aegypii (B) genomes.

Lomsadze et al. 2014



Interesting Observation About Exon Lengths

Lomsadze et al. 2014
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Figure 1. The dot plot graph depicting average lengths of exons, introns
and intergenic regions against the value of percentage of non-coding DNA
in a given genome was made for the five insect genomes used in the
GeneMark-ET tests as well as for several other eukaryotic species. The
average lengths of intron and intergenic regions correlate with the genome
length while the average length of protein-coding exons (CDS) does not
show dependence on the genome size.



Combining Evidence from Multiple Predictions

Haas, Brian J., et al. "Automated eukaryotic gene structure
annotation using EVidenceModeler and the Program to
Assemble Spliced Alignments.” Genome biology 9.1 (2008):
R7.

Next 6 Slides



Other Ways of Using

-Xperimental

~vidence

Experimental evidence (RNA-seq, in particular) is a great help in
improving gene prediction. However, its uses stretch far beyona
assisting ab initio gene prediction.

Transcript quantification

Ditferential expression, alternative splicing analysis

Fusion/chimera detection

Variant (SNP, SV, CNV) detection

Transcript assembly
Genome guided & de novo

Build higher-level models of transcription

co-expression networks -> regulatory networks



Other Ways of Using Experimental Evidence

Transcript quantification

How much of each gene (or transcript / isoform) is
present in a particular experiment?

Ditferential expression, alternative splicing analysis

What are the statistically significant differences in
expression or splicing between experimental conditions”

These tools can be used to study e.g. differences between
healthy / diseased tissue, or how gene expression differs across

tissue types.



Other Ways of Using Experimental Evidence

Fusion/chimera detection

gene Ainchr 9 gene B in chr 22
— B —
TRANSLOCATION
fusion gene —
l TRANSCRIPTION
fusion transcript —{ —
short reads Eg

Variant (SNP, SV, CNV) detection

Find small (SNP) or large (SV) variation in how read
map back to their genes of origin

Find differences in the number of copies of a gene
in the DNA (CNV)

image from: http://biome.ewha.ac.kr:8080/FusionGene/


http://biome.ewha.ac.kr:8080/FusionGene/

Other Ways of Using Experimental Evidence

Transcript assembly

With sufticiently deep sequencing, we can hope to
assemble transcripts present in an experiment in a
manner similar to how we assemble DNA.

This often lets us find previously undiscovered genes,
as well as novel splice variants (combination of exons
that make up an isoform of the gene).

Genome guided and de novo

Assembly can either rely on knowing the reference
genome (making the problem much easier), or can
be done directly from the RNA-seq reads without
the reference (or via hybrid approaches).



Other Ways of Using Experimental Evidence

Build higher-level models of transcription

Co-expression networks -> regulatory networks

By looking at how the expression of different genes covaries
across many different experimental conditions and tissue types,
we can begin to view the set of genes as a network.

Which genes tend to be “turned on” when others are “turned off”.

Use such information to try and determine regulatory

relationships between genes — which genes control others, ana
how.



Genome-guided Assembly, an Example

We'll take a look at how Cufflinks, one of the most popular tools for RNA-
seg-based transcript discovery & guantification assembles transcripts
from data.

Transcript (rather than just “gene”) discovery lets us explore the
different variants of a gene that are actually expressed in a cell.

(A) True Alternative Splicing (B) Alternative Transcript Start Sites (C) Alternative 3' termini
——— Staggered TSS I E— Staggered mmmm——
Alt. donor - \}»— ~ T
— E— poly-A —\
N— - i Alternat|ve
Alt. Acceptor _,%#’H_ Alt. first exons — last exons—\ P
\_o-'-'"-'-f_ﬂ-.‘
Exon inclusion
vs. skipping .._.Q}_-_ Initiation within intfron  EEEEEE—— Poly-A within
I : —
ntron —_— anintron memmmm e
retention ST iy e e -

Alt. Cassette R
Exon =

Caveat. Cuftlinks solves the identification and quantification in largely separate phases. This turns out to
discard a lot of useful information. Newer approaches attempt to combine these two phases, which results
in both better identification and better quantification. Still, Cufflinks is an incredibly useful (and widely used)
tool (cited ~4,500 times).



Cufflinks Transcript Assembly

Cole Trapnell, Brian A. Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J. van Baren, Steven L.

Salzberg, Barbara J. Wold, and Lior Pachter.- Transcript assembly and abundance estimation from RNA-Seq
reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol, 28(5): 511-515 (2010)

* Slide from Carl Kingsford
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Partially Ordered Sets

Def. A pair (S, <) is a partial order if, for all x, y € S:

(transitivity) X<yandy<z=x<z
(reflexivity) X < X

(antisymmetry) x<yandy<x=x=y

chain: every pair is comparable

K9 p-
y

antichain: every pair
is incomparable

* Slide from Carl Kingsford



® = sequenced fragment: m—

X —<

Cufflink's Partial Order

= X aligns to the left of y and x and y have compatible intron structure

incompatible b/c the right end
/ of y» is split-mapped, implying

S m e — an intron where there is no

Intron In Xo.

T~ x3and y3 are nested, and so are
merged into a single fragment.

«—— X4 is uncertain because it could
be compatible with either y4 or

ys; Xa is therefore thrown away.

(Trapnell et al., 2010)

* Slide from Carl Kingsford



Cufflinks’ Assembly Algorithm

(covering)

Partitioning partial order into smallest # of chains —
“parsimonious” set of transcripts that explains the observed reads

Smallest #

of chains

Dilworth’s
Theorem

Largest
antichain

Maximum
bipartite

matching

Dilworth =
Konig

Konig's
Theorem

A vertex cover is a subset of the vertices such that Solvable in
each edge is adjacent to at least one vertex from O(EJV)

the subset.

* Slide from Carl Kingsford



Dilworths Theorem

Thm (Dilworth). In a poset, the size of the largest antichain

= the size of the minimum cover by chains.

Proof intuition.

® The largest antichain must hit every chain (otherwise it
could be made larger).

® [t can't hit any chain twice, otherwise it would contain
two comparable items.

* Slide from Carl Kingsford



Konigs Theorem

Thm (Koénig). In a bipartite graph, the # of edges in a

maximum matching = # of vertices in the smallest vertex
cover.

‘ Proof intuition.

® |n a maximum matching, every
edge must be covered.

&

® Otherwise, if both endpoints
are not matched, we could add
that edge to the matching and
Increase Its size.

* Slide from Carl Kingsford



Using Matching to Find a Minimal Chain

Cover
Edge if
X<y
All items All items Let M be the maximal matching.
in poset in poset By Konig's theorem, there is a (minimal)

vertex cover C of the same size as M.

Let T be the elements of the poset that are

not in C.
If uand v were comparable,

T is an antichain. Why? <€RESCREICRECIRECC
between them, and since
neither u or v was in M, we
could add that edge to M.

Make a set W of chains by u = v if (u,v) € M.

These equivalence classes are chains.

Why? Every pair of items in each equivalence class

had an edge between them, meaning they
were comparable.

* Slide from Carl Kingsford



IW| = |TI

M = maximal matching. n = # elements in poset

C = vertex cover of the same size as M. m = # of edges in matching

T = antichain elements of poset that are not in C.

W = set of chains formed from edges of M.

Size of Tis n - m. Why? Every edge uses up exactly one element on

the LHS of the bipartite graph.

Size of Wis n - m. Why?

Consider set of n “chains” each consisting of a single element of poset.

Each edge (u,v) that we use to put v into the same poset as u reduces the
number of chains by 1.

= Number of equivalence-class chains = n - m

* Slide from Carl Kingsford



Why i1s W Minimum Size?

Chain All antichains must be of size < all chain covers.

covers Suppose not, and let A be an antichain bigger
than cover Q.

Then, by pigeonhole, A must contain at least 2
elements x, y from the same chain in Q.

But X, y are comparable because they are in the
same chain.

antichians

= the pair (T,W) must be a largest antichain and a smallest W because they

are the same size.

* Slide from Carl Kingsford



A Matching-Covering Example

8
@
7 Q 7
6 Q Q 6
9’
50 5
4 Q4
4 3 O 3
® ot
1 1( O 1
Double circles _—
denote vertex cover (Trapnell et al., 2010)

* Slide from Carl Kingsford



Selecting From Among Many Minimum
Solutions

- Correct

)
Wrong

ldea: exons included in same transcript should have similar expression

UGN \casures how similar the exons’ PSI values are SUEIEIE

compatib 1 by length of x).

Weight(a:,y) = — log(l — \%» — ¢y‘)

* Slide from Carl Kingsford



Discovery of Novel Isoforms

Category Transfrags | % of total transfrags | Assembled reads (%)
Match to known isoform 39,857 13.5 76.7

Novel isoform of known gene 18,565 6.3 11.3
Contained in known isoform 71,029 24.1 4.6

Repeat 41,906 14.2 0.6

Intronic 32,658 11.1 0.6
Polymerase run-on 18,522 6.3 0.5
Intergenic 48,604 16.5 1.2

Other artifacts 22,483 7.7 4.5

Total transfrags 293,624 100.0 100.0

TABLE 2. Classification of all transfrags produced at any time point
with respect to annotated gene models and masked repeats in the mouse
genome. Transfrags that are present in multiple time point assemblies are
multiply counted to preserve the relative distribution of transfrags among
the categories across the full experiment.

(Trapnell et al., 2010)

* Slide from Carl Kingsford



