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Finding Genes

We’ll break gene finding methods into 3 main categories.

ab initio
latin — “from the beginning”
w/o experimental evidence

based on predictive modeling

how well do genomic  
sequences score under 

our “gene model”?

comparative
make use of knowledge  

across species

a known human gene is 
strong evidence for a  

chimp gene

many “housekeeping” genes 
are incredibly similar across 

highly divergent species

combined / extrinsic
Make use of experimental 
evidence (e.g. RNA-seq)

Evidence highlights  
transcribed regions

Gene structure extracted  
from evidence (potentially 

combined with model  
predictions)



Typical Approaches to Annotation are “Hybrid” Methods

Consider ab initio predictions

Refine with homological &  
experimental evidence

Combine predictions of  
many different tools

Manually curate the most promising 
results



Hybrid Gene Finding “Pipelines”

ab initio
comparative

de novo (experimental)

evidence combiners
manual curation

http://pasa.sourceforge.net



What is “experimental” data?
There are many ways we can obtain “experimental” 
evidence of a gene.

Sequencing of protein product (mass spec.)

Expressed Sequence Tags (EST)

RNA-Seq

Expensive & slow, but provides direct evidence of 
protein coding genes (reverse translation)

Targeted sequencing (typically Sanger 
sequencing) of expressed transcripts

High throughput sequencing of the “transcriptome”



1. fragmentation of RNA

2. random priming to make sscDNA
rst-strand synthesis)

3. construction of dscDNA
(second-strand synthesis)

4. size selection

5. sequencing

6. mapping

RNA molecules

RNA fragments

sscDNA

dscDNA

Gel cutout 

RNA sequence

paired-end read

sense

anti-sense

short long

Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): R22.

RNA-Seq — Sequencing Transcripts



How is RNA-seq Useful?

RNA-Seq reads come from a spliced transcript — if we can map them 
back to the genome, they give us evidence of transcribed regions.

Image from: Shin, Heesun, et al. "Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without 
Globin Depletion." PloS one 9.3 (2014): e91041.

Human genome contains > 14,000 pseudogenes [Pei et al. Genome 
Biology 2012]



Haas, Brian J., and Michael C. Zody. "Advancing RNA-seq analysis." Nature biotechnology 28.5 (2010): 421.

RNA-seq Alignment is Hard

RNA-seq reads can span 
exon boundaries. Thus, 
contiguous regions of the 
read may map kilobases apart 
when aligning to the genome.

Improving the quality, sensitivity and speed of “spliced” alignment is 
still an active area of research. How can we be confident in a spliced-
alignment when only a small portion of a read maps to an exon?



RNA-seq Assembly is Harder

Assemblers have to deal with  
non-uniform coverage and a  
mixture of different but highly-related 
isoforms in the same sample. We’ll 
talk more about RNA-seq assembly  
later. 



Does Experimental Evidence Help?

There are many uses of RNA-seq apart from helping 
ab initio gene prediction.  

Nonetheless, such evidence may be a powerful tool 
in helping us predict the existence of new genes.  



Unsupervised Gene Finding w/o Experimental Evidence

Lomsadze, Alexandre, et al. "Gene identification in novel eukaryotic genomes by self-training algorithm." Nucleic Acids Research 33.20 (2005): 6494-6506.

Start with heuristic / uninformative parameters and train via 
the Viterbi training algorithm we discussed previously.



D. mel exon lengths

C. intestinalis intron lengths

Lomsadze et al. 2005

Learning Feature Length Distributions



Lomsadze et al. 2005

Unsupervised Training Competes With Supervised Training



Donor Acceptor

1st iter

convergence

Lomsadze et al. 2005

Learning Site-Specific Features



Incorporating Experimental Evidence
GeneMark ET Procedure

Lomsadze, Alexandre, Paul D. Burns, and Mark Borodovsky. "Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding 
algorithm." Nucleic acids research (2014): gku557.



Lomsadze et al. 2014

Incorporating Experimental Evidence



Effect of Using Spliced-Alignments

Lomsadze et al. 2014



Effect of Using Spliced-Alignments

Lomsadze et al. 2014



Lomsadze et al. 2014

Effect of Using Spliced-Alignments



Interesting Observation About Exon Lengths

Lomsadze et al. 2014



Combining Evidence from Multiple Predictions

Haas, Brian J., et al. "Automated eukaryotic gene structure 
annotation using EVidenceModeler and the Program to 

Assemble Spliced Alignments." Genome biology 9.1 (2008): 
R7.

Next 6 Slides



Other Ways of Using Experimental Evidence

Experimental evidence (RNA-seq, in particular) is a great help in 
improving gene prediction.  However, its uses stretch far beyond 
assisting ab initio gene prediction.

Transcript quantification 

Differential expression, alternative splicing analysis 

Fusion/chimera detection

Variant (SNP, SV, CNV) detection

Transcript assembly
Genome guided & de novo

Build higher-level models of transcription

co-expression networks -> regulatory networks



Other Ways of Using Experimental Evidence

Transcript quantification 

Differential expression, alternative splicing analysis 

How much of each gene (or transcript / isoform) is 
present in a particular experiment?

What are the statistically significant differences in 
expression or splicing between experimental conditions?

These tools can be used to study e.g. differences between 
healthy / diseased tissue, or how gene expression differs across 
tissue types.



Other Ways of Using Experimental Evidence
Fusion/chimera detection

Variant (SNP, SV, CNV) detection

image from: http://biome.ewha.ac.kr:8080/FusionGene/

Find small (SNP) or large (SV) variation in how read 
map back to their genes of origin

Find differences in the number of copies of a gene 
in the DNA (CNV)

http://biome.ewha.ac.kr:8080/FusionGene/


Other Ways of Using Experimental Evidence

Transcript assembly

With sufficiently deep sequencing, we can hope to 
assemble transcripts present in an experiment in a 
manner similar to how we assemble DNA.

This often lets us find previously undiscovered genes, 
as well as novel splice variants (combination of exons 
that make up an isoform of the gene).

Genome guided and de novo

Assembly can either rely on knowing the reference 
genome (making the problem much easier), or can 
be done directly from the RNA-seq reads without  
the reference (or via hybrid approaches).



Other Ways of Using Experimental Evidence

Build higher-level models of transcription

By looking at how the expression of different genes covaries 
across many different experimental conditions and tissue types, 
we can begin to view the set of genes as a network.

Co-expression networks -> regulatory networks

Which genes tend to be “turned on” when others are “turned off”.

Use such information to try and determine regulatory 
relationships between genes — which genes control others, and 
how.



Genome-guided Assembly, an Example

We’ll take a look at how Cufflinks, one of the most popular tools for RNA-
seq-based transcript discovery & quantification assembles transcripts 
from data.

Caveat: Cufflinks solves the identification and quantification in largely separate phases.  This turns out to 
discard a lot of useful information. Newer approaches attempt to combine these two phases, which results 
in both better identification and better quantification.  Still, Cufflinks is an incredibly useful (and widely used) 
tool (cited ~4,500 times).

Transcript (rather than just “gene”) discovery lets us explore the 
different variants of a gene that are actually expressed in a cell.

(A) True Alternative Splicing (B) Alternative Transcript Start Sites (C) Alternative 3' termini

Alt. donor

Alt. Acceptor

Exon inclusion
 vs. skipping 

Intron 
retention

Alt. Cassette 
Exon

Staggered TSS

Alt. first exons

Initiation within intron

Staggered 
poly-A

Alternative 
last exons

Poly-A within 
an intron 

Figure 5 – (Redrawn from [4, 47]) Transcript structures illustrating 11 distinct types of alternatively included regions
(AIRs) within the genes. (A) Most patterns of alternative splicing lead to distinct RNAs that are distinguished by an
indel. These include alternative donors, alternative acceptors, alternatively included exons, and intron retention. A
fifth pattern of alternative splicing (mutually exclusive cassette exons) leads to two isoforms that differ by a substitution
rather than an indel. (B) 3 classes of alternative transcription start sites. The simplest is staggered transcription
start sites without a difference in splicing. A distinct class, extremely common in human genes, involves alternative
transcription start sites with distinct upstream exons (or sets of exons), which are spliced to a common downstream set
of exons. Finally, transcription initiation within an intron (not necessarily the first intron) can lead to two (or more)
transcripts, each of which has unique sequence. (C) 3 classes of alternative 3′ termini. The simplest is staggered
polyadenylation sites. Alternative terminal exons and 3′ end formation within an intron (not necessarily the last
intron) lead to two (or more) transcripts, each of which has unique sequence.

(e.g. splice junctions, RNA edits). An advantages of our clustering approach is that we can apply many of
the outlier detection techniques that have been developed in the data mining community [17].

For example, k-mers that are far from a cluster center or that are in a low-density region of the space are
outlier candidates. The distance from the center can be defined as simple Euclidean distance or the more
sophisticated Mahalanobis distance [17] that accounts for cluster shape using a co-variance matrix. Dense
regions can be estimated either with a high-dimensional histogram or by looking at the relative distance to
nearest neighbors. See [17] for an extensive discussion of techniques of this sort for outlier detection.

We can also exploit some genomic features to prune k-mers. Well-behaved k-mers should co-cluster
with many of their genomic neighbors. Similarly, a k-mer should co-cluster with many of its “shifts” —
k-mers that overlap it in sequence. K-mers for which these facts are not true ought to be given less weight.

These various filtering strategies and their parameters can be tested as described in section 5.3.

Box E: Annotating cluster types

We want to identify which clusters correspond to AIRs (including novel splice junctions and editing sites or
polymorphisms), and CIRs. Figure 5 shows the great variety of alternative splicing events that can occur.
Many patterns of splicing lead to an indel that will create k-mers that will be co-expressed. Figure 6 gives
a small example of such a situation: the AIR Z induces a cluster z1 corresponding to the k-mers in or
overlapping Z and a cluster z0 corresponding to the excision of AIR Z.

Even in cases where one of two isoforms has no nucleotides that are not present in the other, there will
still be k-mers not found in that other isoform. For example, given the two hypothetical isoforms

1 AAGTGAACAGGTGAGAATTTTTAATCGTTCTAAC
2 AAGTGAACAGGTTCTAAC

and k = 7, isoform 1 differs by an insertion of GTGAGAATTTTTAATC. While isoform 2 has no nucleotides
that are not found in isoform 1, all k-mers spanning the junction are unique to isoform 2 (for k = 7, these are

9



Cufflinks Transcript Assembly
Cole Trapnell, Brian A. Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J. van Baren, Steven L. 
Salzberg, Barbara J. Wold, and Lior Pachter.. Transcript assembly and abundance estimation from RNA-Seq 
reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol, 28(5): 511–515 (2010) 

* Slide from Carl Kingsford



Cufflinks Pipeline

Alignment

Assembly

Quantification



Partially Ordered Sets
Def. A pair (S, ≤) is a partial order if, for all x, y ∈ S: 

(transitivity)   x ≤ y and y ≤ z ⇒ x ≤ z 

(reflexivity)   x ≤ x 

(antisymmetry)  x ≤ y and y ≤ x ⇒ x = y

y

x

z

chain: every pair is comparable

antichain: every pair 
is incomparable

* Slide from Carl Kingsford



Cufflink’s Partial Order
= sequenced fragment:

x

y
= x aligns to the left of y and x and y have compatible intron structure

(Trapnell et al., 2010)

y1 ≤ x1

incompatible b/c the right end 
of y2 is split-mapped, implying 
an intron where there is no 
intron in x2.

x3 and y3 are nested, and so are 
merged into a single fragment.

x4 is uncertain because it could 
be compatible with either y4 or 
y5; x4 is therefore thrown away.

* Slide from Carl Kingsford



Cufflinks’ Assembly Algorithm

Partitioning partial order into smallest # of chains → 
“parsimonious” set of transcripts that explains the observed reads  

(covering)

Smallest # 
of chains

Largest 
antichain

Vertex 
cover

Maximum 
bipartite 
matching

Dilworth’s 
Theorem

König’s 
Theorem

Dilworth ≣ 
König

Solvable in 
O(E√V)

* Slide from Carl Kingsford

A vertex cover is a subset of the vertices such that 
each edge is adjacent to at least one vertex from 
the subset.



Dilworth’s Theorem

Thm (Dilworth). In a poset, the size of the largest antichain 
= the size of the minimum cover by chains. 

Proof intuition.

• The largest antichain must hit every chain (otherwise it 
could be made larger). 

• It can’t hit any chain twice, otherwise it would contain 
two comparable items.

* Slide from Carl Kingsford



König’s Theorem

Thm (König). In a bipartite graph, the # of edges in a 
maximum matching = # of vertices in the smallest vertex 
cover. 

Proof intuition.

• In a maximum matching, every 
edge must be covered.  

• Otherwise, if both endpoints 
are not matched, we could add 
that edge to the matching and 
increase its size.

* Slide from Carl Kingsford



Using Matching to Find a Minimal Chain 
Cover

All items 
in poset

All items 
in poset

Edge if 
x < y

Let M be the maximal matching. 

By König’s theorem, there is a (minimal) 
vertex cover C of the same size as M. 

Let T be the elements of the poset that are 
not in C. 

T is an antichain. Why?

Make a set W of chains by u ≣ v if (u,v) ∈ M. 

These equivalence classes are chains. 
Why?

If u and v were comparable, 
there would be an edge 
between them, and since 
neither u or v was in M, we 
could add that edge to M.

Every pair of items in each equivalence class 
had an edge between them, meaning they 
were comparable.

* Slide from Carl Kingsford



|W| = |T|
M = maximal matching. 

C = vertex cover of the same size as M. 

T = antichain elements of poset that are not in C. 

W = set of chains formed from edges of M.

n = # elements in poset 

m = # of edges in matching

Size of W is n - m. Why?

Consider set of n “chains” each consisting of a single element of poset. 

Each edge (u,v) that we use to put v into the same poset as u reduces the 
number of chains by 1. 

⇒ Number of equivalence-class chains = n - m 

Size of T is n - m. Why? Every edge uses up exactly one element on 
the LHS of the bipartite graph. 

* Slide from Carl Kingsford



Why is W Minimum Size?

chain 
covers

antichians

All antichains must be of size ≤ all chain covers. 

Suppose not, and let A be an antichain bigger 
than cover Q.  

Then, by pigeonhole, A must contain at least 2 
elements x, y from the same chain in Q. 

But x, y are comparable because they are in the 
same chain.

⇒ the pair (T,W) must be a largest antichain and a smallest W because they 

are the same size.

* Slide from Carl Kingsford



A Matching-Covering Example

(Trapnell et al., 2010)

* Slide from Carl Kingsford

Double circles 
denote vertex cover



Selecting From Among Many Minimum 
Solutions

Idea: exons included in same transcript should have similar expression

w x y zv

Correct

Wrong

Estimate Percent Spliced In (PSI, ψ): # of reads crossing exon x that are 
compatible with x divided by # of reads overlapping x (divided by length of x).

weight(x, y) = � log(1� | 
x

�  

y

|)

measures how similar the exons’ PSI values are

* Slide from Carl Kingsford



Discovery of Novel Isoforms

(Trapnell et al., 2010)

* Slide from Carl Kingsford


