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We believe there are many places where this replacement can be 
made.  I’ll discuss one in some depth (and mention a second):

1)Transcript-level quantification 

• Determine abundance of transcripts from a collection of RNA-seq reads. 

• The quasi-mapping information is sufficient to yield estimates as accurate 
as full alignment.  

2)de novo transcript clustering 

• Find groups of related contigs likely from the same transcript / gene 

• Such groups help improve downstream analysis (e.g. differential expression 
testing)

Obviously, alignments are necessary for certain types of analysis (e.g. 
variant detection).

Where might we use quasi-mapping?
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(e.g. Sailfish)

Given:    (1) Collection of RNA-Seq fragments 
     (2) A set of known (or assembled) transcript  

    sequences 

Estimate:   The relative abundance of each transcript

Question: If we only care about “gene" abundance, can’t we just count the 
number of reads mapping / aligning to each gene?

Answer: No. I’ll show a general argument (and a few examples) why!



First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

Here, a dot of a color means I hit a circle of that color.  
  What type of circle is more prevalent? 
  What is the fraction of red / blue circles?



First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

You’re missing a crucial piece of information!
The areas!



First, consider this non-Biological example
Imagine I have two colors of circle, red and 
blue. I want to estimate the fraction of circles 
that are red and blue.  I’ll sample from them by 
tossing down darts.

You’re missing a crucial piece of information!
The areas!

There is an analog in RNA-seq, one needs to know the  
length of the target from which one is drawing to  
meaningfully assess abundance!



Adapted from: Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." Nature biotechnology 31.1 (2013): 46-53.

Resolving multi-mapping is fundamental to quantification

Key point : The length of the actual molecule from which the fragments derive 
is crucially important to obtaining accurate abundance estimates.

Isoform A is half 
as long as isoform B 

true  
fold-change

union-model  
fold-change

0 < 0.32

-0.41 < 0.58

-1 < 0

Condition 1 Condition 2



These errors can affect DGE calls

From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Variants of Salmon

Variants of “counting”

Resolving multi-mapping is fundamental to quantification



From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)

Can even affect abundance estimation in absence of alternative-splicing 
(e.g. paralogous genes)

Paralogs of

Resolving multi-mapping is fundamental to quantification



Experimental Mixture Read set

sequencing oracle

Pick a transcript t ∝ count * length
Pick a position p on t uniformly “at random”

How do we do something better than “counting”?
Think about the “ideal” RNA-seq experiment . . .



Experimental Mixture

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

How do we do something better than “counting”?



Experimental Mixture

We call these values η = [0.3, 0.6, 0.1] the nucleotide fractions, 
they become the primary quantity of interest

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

How do we do something better than “counting”?



Say we knew the η, and observed a read that 
mapped ambiguously, as shown above. What is 
the probability that it truly originated from G or R?

normalization 
factor

length(                  ) = 100
length(                  ) = 66

length(                  ) = 33

x 6 copies
x 19 copies 

x 6 copies

= 600 nt
= 1254 nt
= 198 nt

~ 30% blue

~ 60% green

~ 10% red

Pr {r from G} =

⌘G

length(G)
⌘G

length(G) +
⌘R

length(R)

=

0.6
66

0.6
66 +

0.1
33

= 0.75

Pr {r from R} =

⌘R

length(R)
⌘G

length(G) +
⌘R

length(R)

=

0.1
33

0.6
66 +

0.1
33

= 0.25

Resolving a single multi-mapping read



So how do we estimate abundance “correctly”?

Key idea: Find the set of transcript abundances that 
maximizes the probability of the observed data — this is 
done by probabilistic assignment of fragments to 
transcripts.

That is: We’re asking for the maximum likelihood 
estimates of transcript abundance

argmax

⇢2P
L(⇢;x1, . . . , xn)

abundances — 
parameters of a  

generative model

observations — 
alignments of reads 

to transcripts



So how do we estimate abundance “correctly”?

Finding the maximum likelihood estimates first requires 
defining the likelihood:

*Pachter, Lior. "Models for transcript quantification from RNA-Seq." arXiv preprint arXiv:1104.3889 (2011).

We’ll define it in terms of parameters alpha

which are relatable, directly, to the rhos



Prob(Picking the green transcript) =
copies of the green transcript

total number of transcripts in the pool

Prob(picking this read) =
1

length of green transcript

32

Suppose we sequenced just 
one read. This one.

Defining the likelihood function for a gene

A few things need to happen to get this read as opposed to all the others we could have 
gotten:

Then, we need to pick this read from that transcript over all the others.

We need to pick out a transcript from the RNA pool that could generate this read:

F1

Monday, February 25, 13
slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf


�green

Prob(F1|�green) =
�green

lgreen

33

Suppose we sequenced just 
one read. This one.

Defining the likelihood function for a gene

So given a relative abundance for the green transcript, which we’ll call 

F1

we can calculate the probability of getting F1.

Monday, February 25, 13

↵green

↵green

not normalized by length

Pr(F1 2 Tgreen) = Pr(F1 | ↵green) =
↵green

`green

slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf


Prob(F2|�) =
�green

lgreen
+

�blue

lblue

34

Let’s look at a different read

Defining the likelihood function for a gene

F2

F2 could have come from either transcript, so we have to consider 
two ways of getting it:

That is, in order to know the probability of getting F2, we need to know 
the abundances of both the transcripts it might have come from.

Monday, February 25, 13

Pr(F2 2 Tgreen or F2 2 Tblue) = Pr(F2 | ↵) = ↵green

`green
+

↵blue

`blue

slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf


Prob(F |�) =
�

�green

lgreen

�
·
�

�green

lgreen
+

�blue

lblue

�
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What are the chances of 
getting both reads?

Defining the likelihood function for a gene

F2

To get both F1 and F2, we just need to multiply the two probabilities!

F1

Monday, February 25, 13

Pr(F1 2 Tgreen and F2 2 Tgreen or F2 2 Tblue) = Pr(F | ↵) =
✓
↵green

`green

◆
·
✓
↵green

`green
+

↵blue

`blue

◆

slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf
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What are the chances of 
getting both reads?

Defining the likelihood function for a gene

F2

Let’s look at this probability as a function of gamma:

F1

Given a input assignment of abundances to transcripts (the gammas), this 
function returns a number. The greater the number, the better the chances of 
seeing the reads we actually see.

Monday, February 25, 13

alpha

alphas

L(↵;F ) = L(↵) =
✓
↵green

`green

◆
·
✓
↵green

`green
+

↵blue

`blue

◆

slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf
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Defining the likelihood function for a gene

37

F3 F1 F2

T1

T2

We can take any set of reads and any set of transcripts, and build 
one of these likelihood functions:

F1 F2 F3

T1 ✓ ✓ ✗

T2 ✗ ✓ ✓

Compatibility table

Now we want to find the values of gamma that maximize this likelihood function.

Monday, February 25, 13

alpha

L(↵;F ) = L(↵) =
✓
↵green

`green

◆
·
✓
↵green

`green
+

↵blue

`blue

◆
·
✓
↵blue

`blue

◆

slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf


Likelihood Function

With the simplest generative model, we get a 
likelihood function that looks like this:

fragments 
compatible w/ 

transcript t

*Pachter, Lior. "Models for transcript quantification from RNA-Seq." arXiv preprint arXiv:1104.3889 (2011).



Assigning reads to isoforms

38

Problem: infer which transcript each fragment came from

Some fragments could have come from any transcript (black), while others only one (blue, 
yellow).  The purple fragment could have come from either the red or the blue one.

Conditional probability that a fragment came from a given isoform is a function of that 
isoform’s abundance!

Monday, February 25, 13
slide from Cole Trapnell (http://www.stat115.org/lectures/stat115_rnaseq.pdf)

http://www.stat115.org/lectures/stat115_rnaseq.pdf


Finding the MLE
This problem lends itself very well to an Expectation 
Maximization (EM) approach.

Essentially:

While not converged:

Assign fragments to transcripts (probabilistically) 
using current estimates of transcript abundance.

Re-estimate transcript abundance using 
probabilistic fragment assignments.

E-step

M-step



E-step
M-step

*Pachter, Lior. "Models for transcript quantification from RNA-Seq." arXiv preprint arXiv:1104.3889 (2011).

The EM steps, visually



*Pachter, Lior. (2011)



https://github.com/COMBINE-lab/salmon

Official website:

GitHub repository:

Salmon provides accurate, fast, and bias-aware 
transcript expression estimates using dual-phase 

inference

http://combine-lab.github.io/salmon/

Transcript Quantification

joint work with  Geet Duggal, Mike Love, Rafael Irizarry & Carl Kingsford

https://github.com/COMBINE-lab/salmon
https://github.com/kingsfordgroup/sailfish


A probabilistic view of  RNA-Seq quantification

We want to find the values of η that maximize this probability.  
We can do this (at least locally) using the EM algorithm.

observed 
fragments 

(reads)

known  
transcriptome

nucleotide 
fractions

assumes 
independence 
of fragments

Prob. of selecting 
ti given η

Prob. of generating 
fragment fj given it originates from ti

Depends on 
abundance 

estimate

Independent of 
abundance 

estimate

We can safely truncate Pr{ti | η} 
to 0 for transcripts where a 

fragment doesn’t map.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC 
bioinformatics 12.1 (2011): 1.

Pr{F | ⌘, T } =
NY

j=1

Pr{fj | ⌘, T }



a fragment 
of the given length

a fragment 
starting at given position

a fragment 
of given orientation

generating the given 
alignment / mapping

• Salmon estimates an auxiliary model from the data for each term (e.g. fragment 
length, fragment start position, etc.) 

• Accounts for sample-specific parameters and biases. 

• Also includes modeling of e.g. seq-specific and GC-fragment bias not shown in 
above equation.

A probabilistic view of  RNA-Seq quantification



Why does               matter?

Consider the following scenario:

0 200 800

fragment 
length dist.

isoform A

isoform B

200 bp

1000 bp

Aux. model provides strong 
information about origin of a 
fragment!

Prob of observing a fragment of size ~200 is large
Prob of observing a fragment of size ~1000 is very small



dual-phase 
inference

quasi-
mapping

Salmon’s “pipeline”



Phase 1: Online Inference

η0 η1 η2 η3 η4 η5

Compute local η’ using ηt-1 & current “bias” model to allocate fragments 

Update global nucleotide fractions: ηt = ηt-1 + at ηʹ

Process fragments in batches:

Update “bias” model
Weighting factor that 

decays over time

• Have access to all fragment-level information when making these updates  
• Often converges very quickly. 
• Compare-And-Swap (CAS) for synchronizing updates of different batches

Place mappings in equivalence classes

* Based on: Foulds et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation. ACM SIGKDD, 2013.

*



mini-batches processed in parallel by different threads

additive nature of updates mitigates effects of 
no synchronization between mini-batches

Give each transcript appropriate prior mass η0 (init.)
For each mini-batch Bt of reads {

For each read r in Bt {

For each alignment a of r {
compute (un-normalized) prob of a using ηt-1, and aux params

normalize alignment probs & update local transcript weights η’ 

update global transcript weights given local transcript 
weights according to “update rule” ⟹

}

}

ηt = ηt-1 +wt ηʹ
}

add / update the equivalence class for read r 
sample a ∈ r to update auxiliary models



TranscriptsFragments

1

2

3

4

Reads 1 & 3 both map to transcripts B & E 
Reads 2 & 4 both map to transcript C

A
B
C
D
E
F

We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

Fragment Equivalence Classes



TranscriptsFragments

1

2

3

4

Reads 1 & 3 both map to transcripts B & E 
Reads 2 & 4 both map to transcript C

A
B
C
D
E
F

We have 4 reads, but only 2 eq. classes of reads
eq. Label Count Aux weights

{B,E} 2 w{B,E}B,w{B,E}E

{C} 2 w{C}C

wji encodes the “affinity” of class j 
to transcript i according to the 
model. This is P{fj | ti}, aggregated 
for all fragments in a class.

Fragment Equivalence Classes

Exploring even “richer” notions of equivalence classes.



Equivalence classes in RNA-Seq

1:Salzman, Julia, Hui Jiang, and Wing Hung Wong. "Statistical modeling of RNA-Seq data." Statistical science: a review journal of the Institute of 
Mathematical Statistics 26.1 (2011).

2:Nicolae, Marius, et al. "Estimation of alternative splicing isoform frequencies from RNA-Seq data." Algorithms for Molecular Biology 6.1 (2011): 1.

3:Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.

4:Patro, Rob, Stephen M. Mount, and Carl Kingsford. "Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight 
algorithms." Nature biotechnology 32.5 (2014): 462-464.

5:Bray, Nicolas L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525-527.

Long history of this idea — collapsing “redundant” reads

Salzman et al.1 — equiv classes defined on exons / exon-pairs implied by 
multimapping reads (requires annotation).
Nicolae et al.2 — equiv classes defined on txps, implied by multimapping 
reads require proportional conditional probabilities 
Turro et al.3 — equiv classes defined on txps, implied by multimapping 
reads

Patro et al.4 — equiv classes defined on txps, implied by shared k-mers

Bray et al.5 — equiv classes defined on txps, implied by shared T-DBG 
contigs & multimapping reads



The # of equivalence classes grows with the complexity of the 
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence 
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment 
equivalence classes.

The number of  equivalence classes is small



Consider our likelihood

where 𝛼i is prop. to # of reads assigned to ti

our ML objective can be re-written in terms of our eq. classes

count of eq. 
class j

weight of ti in eq. 
class j

Optimizing the objective

we also provide the option to use a variational Bayesian objective instead:

↵u+1
i = ↵0

i +
X

Cj2C
dj
 

e�
u
i wj
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�u
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Awhere



Transcript inference methods can be very accurate

Results on 20 replicates simulated (RSEM-
sim) from parameters learned from 
NA12716_7 from GEUVADIS. Showing result 
distributions for kallisto1, eXpress2 & salmon3

1: Bray, Nicolas L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525-527. (v0.43.0) 

2: Roberts, Adam, and Lior Pachter. "Streaming fragment assignment for real-time analysis of sequencing experiments." Nature methods  
   10.1 (2013): 71-73. (v.1.5.1)
3: Patro, Rob, et al. "Accurate, fast, and model-aware transcript expression quantification with Salmon." bioRxiv (2015): 021592. (v0.7.0)



Actual RNA-seq protocols are a bit more “involved”

There is substantial potential for biases and deviations from our model — 
indeed, we see quite a few.



Biases abound in RNA-seq data
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Biases in prep & sequencing 
can have a significant effect on the 
fragments we see.

Sequence-specific bias2— 
sequences surrounding fragment 
affect the likelihood of sequencing

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.

1:Love, Michael I., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript 
abundance estimation." bioRxiv (2015): 025767.

Fragment gc-bias1— 
The GC-content of the fragment 
affects the likelihood of sequencing

Positional bias2— 
fragments sequenced non-uniformly 
across the body of a transcript



Bias Modeling
Bias correction works by adjusting the effective lengths of the transcripts: 
The effective length becomes the sum of the per-base biases

Fragment GC bias model:
Density of fragments with specific GC content, 
conditioned on GC fraction at read start/end{

GC-fraction of fragment
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Bias Modeling
Bias correction works by adjusting the effective lengths of the transcripts: 
The effective length becomes the sum of the per-base biases

Seq-specific bias model*:

VLMM for the 10bp window surrounding the 5’  
read start site and the 3’ read start site

Foreground:

Background:
Observed

Expected given est. abundances

{ACTGCATCCG

Add this sequence to training set with weight =  
P{f | ti}

*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.

Same, but independent 
model for 3’ end
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Bias Modeling
Bias correction works by adjusting the effective lengths of the transcripts: 
The effective length becomes the sum of the per-base biases

Position bias model*:

Density of 5’ and 3’ read start positions — 
different models for transcripts of different length

*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.
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Sequence-bias models don’t account  for fragment-level GC bias

Accuracy difference can be larger with biased data

Simulated data: 
2 conditions; 8 samples each

• Simulated transcripts across 
entire genome with known 
abundance using Polyester 
(modified to account for GC 
bias)

• How well do we recover the 
underlying relative 
abundances?

• How does accuracy vary with 
level of bias?



Accuracy difference can be larger with biased data



Recovery of DE transcripts

• set 10% of txps to have fold 
change of 1/2 or 2 — rest 
unchanged.

• How well do we recover true 
DE?

Simulated data: 
2 conditions; 8 replicates each

• Since bias is systematic, effect 
may be even worse than 
accuracy difference suggests.

Mis-estimates confound downstream analysis



Recovery of DE transcripts

Accuracy difference can be large with biased data!

At the same FDR,  
accuracy differences of  

53 - 450%



Salmon Kallisto eXpress

All transcripts 1,171 2,620 2,472

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE (primary differences 
in sample prep)

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data



Salmon Kallisto eXpress

All transcripts 1,171 2,620 2,472

Transcripts of 2 
isoform genes 224 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

Same human population, expect few-to-no real DE (primary differences 
in sample prep)

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

But this is txp-level DE, and I care only about genes!



Salmon Kallisto eXpress

All genes 455 1,200 1,582

Transcripts of 2 
isoform genes 228 545 531

30 samples from the GEUVADIS study: 
15 samples from UNIGE sequencing center 
15 samples from CNAG_CRG sequencing center

DE of data between centers (FDR < 1%) (TPM > 0.1)

Bias and batch effects are substantial, and must be accounted for.

Importance with experimental data

Effects seem at least as extreme at the gene level 



Salmon and kallisto are FAST

http://www.sbnation.com/lookit/2016/8/12/12463026/katie-ledectky-800m-gold-video-highlights-rio-olympics



Salmon and kallisto are FAST

Consider the following test:

Take all 20 replicates of the RSEM-sim simulated 
data above, treat them as one, giant sample.  This is 
20 samples x 30M paired-end reads = 600 million 
read pairs or 1.2 billion individual reads.
Using 30 threads1: 

  kallisto can process this sample in 20 minutes 
  Salmon can process this sample in 23 minutes

Just aligning  the reads to use e.g. eXpress, 
Cufflinks, RSEM etc. would take dozens of hours.

1: Intel Xeon E5-4600 (2.6GHz)



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to 
represent the RNA-seq process. 

It can be optimized efficiently using e.g. the EM / VBEM algorithm.

but, these efficient optimization algorithms return “point estimates” 
of the abundances. That is, there is no notion of how certain we are 
in the computed abundance of  transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

• Technical variance : If we sequenced the exact same sample 
again, we’d get a different set of fragments, and, potentially a 
different solution. 

• Uncertainty in inference: We are almost never guaranteed to  
find a unique, globally optimal result.  If we started our 
algorithm with different initialization parameters, we might get 
a different result.

We’re trying to find the best 
parameters in a space with 10s to 
100s of thousands of dimensions!



One “issue” with maximum likelihood (ML)

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png (CC BY-SA 3.0)

If we started here

We’d end up here

but, if we started here

We’d end up here

https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png


Assessing Uncertainty
There are a few ways to address this “issue”

Do a fully Bayesian inference1: 
   Infer the entire posterior distribution of parameters, not just a ML     
   estimate (e.g. using MCMC) — too slow! 

Posterior Gibbs Sampling2,3: 
     Starting from our ML estimate, do MCMC sampling to explore  

 how parameters vary — if our ML estimate is good, and taking  
 advantage of equivalence classes, this can be made very fast. 

Bootstrap Sampling4: 
Resample (from equivalence class counts) with replacement, and re-
run the ML estimate for each sample.  This can be made reasonably 
fast.

4: IsoDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based differential gene 
expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first made practical / fast in kallisto by 
doing the bootstrapping over equivalence classes.

1: BitSeq (with MCMC) actually does this.  It’s very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying 
differentially expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.] 

✔

✔

Happy to discuss details / implications of this further.

2: RSEM has the ability to do this, and it seems to work well, but each sample scales in the # of reads. [Li, Bo, and Colin N. Dewey. "RSEM: accurate 
transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 (2011): 1.] 

3: MMSEQ can perform Gibbs sampling over shared variables (i.e. equiv classes), producing estimates from the mean of the posterior dist.Turro, 
Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



• finding locations of reads 
(mapping) is slow than necessary 

• alternative splicing  and related 
sequences creates ambiguity 
about where reads came from 

• sampling of reads is not uniform or 
idealized 

• uncertainty in ML estimate of 
abundances

→ Use quasi-mapping

→ Use dual-phase inference 
algorithm

→ Use bias models learned 
from data

Salmon addresses the main challenges of  quantification

→ Use posterior Gibbs 
sampling or bootstraps to 
assess uncertainty



• Speed of inference makes it possible to use bootstraps or 
posterior Gibbs sampling to estimate variance (e.g. how certain 
are we in quantification estimates?).  

• Quasi-mapping means no large, intermediate BAM files sitting on 
disk, or wasting computation time with slow disk I/O. 

• Expressive model means new types of bias can be learned and 
accounted for. 

• Separation of mapping / alignment and inference means Salmon 
can be used with or without existing alignments*. Here I talked 
only about quasi-mapping, but Salmon can use take BAM input 
from an aligner (if you really want!).

Salmon has many other benefits

Many of these improvements (except dual-phase inference) have been 
back-ported to Sailfish, which is still actively developed!

https://github.com/kingsfordgroup/sailfish

https://github.com/kingsfordgroup/sailfish


Carl Kingsford (CMU)

Geet Duggal (CMU / DNAnexus)

Collaborators on Salmon

Mike Love (Harvard / UNC)

Rafael Irizarry(Harvard)



“Common” topics we didn’t get to cover:
RNA secondary structure prediction:

What structural features are 
present in an RNA-molecule?

Certain forms of the problem can 
be solved using DP.

Very interesting mixed DP & 
sampling solutions for harder 

variants.
Motif finding:

Finding “over represented” sub-sequences in a long sequence / 
collection of sequences.

Commonly approached via efficient statistical inference 
approaches (Gibbs sampling).



“Advanced” topics we didn’t get to cover:
Biological Networks

Inferring regulation from co-
expression

Transferring knowledge by 
aligning networks

Network phylogeny — inferring 
ancestral networks?

Metagenomics

Estimating abundance of species 
from environmental sample

Assembling (partial) genomes 
from large environmental sample

How does metagenomic makeup 
change with phenotype?

Variant Detection and Association:

How do we efficiently and with high-confidence determine where a 
sequenced sample differs from a reference / different sample?

Which variations (groups of variations) are associated with 
certain traits, diseases or phenotypes?



“Advanced” topics we didn’t get to cover:

Too much else to list, but I’m happy to discuss with you!

Closing administrivia  
Final: Dec 14th 5:30 — 8:00 PM (in this room)

Final project: Dec 15th 11:59 PM — please 
turn it in using Blackboard.


