
CSE 549:
Computational Biology

Computer Science for Biologists Biology

What is Computer Science?

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

http://people.cs.pitt.edu/~kirk/cs2110/computer_science_major.PNG

What is Computer Science?
Not actually simple to define constructively

Still debate whether certain areas constitute CS

What isn’t Computer Science?
Don’t install operating systems (may develop them)
Don’t set up the office network (may study / design network
protocols)
Not about Hacking together a program or learning a web-framework
— programming ≠ CS (may study formal languages and develop
new programming languages)

Computer science is the scientific and practical approach to
computation and its applications. It is the systematic study of the
feasibility, structure, expression, and mechanization of the methodical
procedures (or algorithms) that underlie the acquisition, representation,
processing, storage, communication of, and access to information* …

*http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf

What is Computer Science?
Started as a branch of Mathematics — early computing machines

Difference engine →
Analytical engine*

Charles Babbage (1791-1871) Ada Lovelace (1791-1871)

*Analytical engine (would have been the first Turing-complete, general
purpose computer) was never completed
en.wikipedia.org

Commonly considered the first
“programmer”; developed an algorithm
for the analytical engine to compute the

Bernoulli numbers

http://en.wikipedia.org

What is Computer Science?
What is “computable”? Early 20th century & birth of “modern” CS

What is Computer Science?
What is “computable”? Early 20th century & birth of “modern” CS

Kurt
Gödel

What is Computer Science?
What is “computable”? Early 20th century & birth of “modern” CS

Kurt
Gödel

Alan
Turing

What is Computer Science?
What is “computable”? Early 20th century & birth of “modern” CS

Kurt
Gödel

Alan
Turing

Alonzo
Church

What is Computer Science?
What is “computable”? Early 20th century & birth of “modern” CS

Kurt
Gödel

Alan
Turing

Alonzo
Church

John
von Neumann

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Input DNA

Reads Reference genome

+

Assembly

X
How to assemble
puzzle without the
benefit of knowing
what the finished
product looks like?

Next 5 slides courtesy of Ben Langmead

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

Reconstruct
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct
this

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The genome (string), G, that generated them

Not well-specified.
What makes one genome more likely than another?
What constraints do we place on the space of solutions?

What is Computer Science?

Concerned with the development of provably correct
and efficient computational procedures (algorithms &
data structures) to answer well-specified problems.

To answer a computational question, we first need
a well-formulated problem.

Given: a collection, R, of sequencing reads (strings)

Find: The shortest genome (string), G, that contains
all of them

✔

Shortest Common Superstring

Given: a collection,

Find*: The shortest possible genome (string), G, such

 , of sequencing S = {s1, s2, . . . , sk}
reads (strings)

that s1, s2, . . . , sk are all substrings of G

*for reasons we’ll explore later, this isn’t actually
a great formulation for genome assembly.

How, might we go about solving this problem?

Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Slide courtesy of Ben Langmead

Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modified overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That’s the Traveling Salesman
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

Slide courtesy of Ben Langmead

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Slide courtesy of Ben Langmead

Shortest common superstring & friends

For refreshers on Traveling Salesman, Hamiltonian Path, NP-hardness
and NP-completeness, see Chapters 34 and 35 of “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein, or Chapters 8 and 9
of “Algorithms” by Dasgupta, Papadimitriou and Vazirani (free online:
http://www.cs.berkeley.edu/~vazirani/algorithms)

Traveling Salesman, Hamiltonian Path, and Shortest Common Superstring
are all NP-hard

Slide courtesy of Ben Langmead

Important note: The fact that we modeled SCS as NP-
hard problems (TSP and HP) does not prove that (the
decision version of) SCS is NP-complete. To do that, we
must reduce a known NP-complete problem to SCS.

Given an instance I of a known hard problem, generate an
instance I’ of SCS such that if we can solve I’ in polynomial
time, then we can solve I in polynomial time. This implies that
SCS is at least as hard as the hard problem.

This can be done e.g. with HAMILTONIAN PATH

Arbitrary
instance of

HP

Constructed
instance of

SCS

transformation
(computable in poly time)

reverse transformation
(computable in poly time)

solve SCS
instance

HP
known to
be NP-complete

Shortest Common Superstring
The fact that SCS is NP-complete means that it is unlikely
that there exists any algorithm that can solve a general
instance of this problem in time polynomial in n — the
number of strings.

If we give up on finding the shortest possible superstring G,
how does the situation change?

Shortest Common Superstring
There’s a “greedy” heuristic that turns out to be an approximation
algorithm (provides a solution within a constant factor of the the
optimum)

ratio authors year

approximating SCS

3 Blum, Jiang, Li, Tromp and Yannakakis [4] 1991

2 8
9 Teng, Yao [23] 1993

2 5
6 Czumaj, Gasieniec, Piotrow, Rytter [8] 1994

2 50
63 Kosaraju, Park, Stein [15] 1994

2 3
4 Armen, Stein [1] 1994

2 50
69 Armen, Stein [2] 1995

2 2
3 Armen, Stein [3] 1996

2 25
42 Breslauer, Jiang, Jiang [5] 1997

2 1
2 Sweedyk [21] 1999

2 1
2 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005

2 1
2 Paluch, Elbassioni, van Zuylen [18] 2012

2 11
23 Mucha [16] 2013

approximating compression

1
2 Tarhio, Ukkonen [22] 1988
1
2 Turner [24] 1989
2
3 Kaplan, Lewenstein, Shafrir, Sviridenko [12] 2005
2
3 Paluch, Elbassioni, van Zuylen [18] 2012

inapproximability for SCS

1 1
17245 Ott [17] 1999

1 1
1216 Vassilevska [25] 2005

1 1
332 Karpinski, Schmied [14] 2012

inapproximability for compression

1 1
11216 Ott [17] 1999

1 1
1071 Vassilevska [25] 2005

1 1
203 Karpinski, Schmied [14] 2012

Table 1: Known approximation ratios and inapproximability results for length
and compression of superstrings

Golovnev, Kulikov, & Mihajlin. "Approximating Shortest Superstring Problem Using de Bruijn Graphs." Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2013.

At each step, chose the pair of
strings with the maximum
overlap, merge them, and return
the merged string to the
collection.

Greedy conjecture factor of 2-
OPT is the worst case — proof for
factor 3.5

Different approx. (not all greedy)

Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

%%ABA%ABB%AAA%AAB%BBB%BBA%BAB%BAA
2%BAAB%ABA%ABB%AAA%BBB%BBA%BAB
2%BABB%BAAB%ABA%AAA%BBB%BBA
2%BBAAB%BABB%ABA%AAA%BBB
2%BBBAAB%BABB%ABA%AAA
2%BBBAABA%BABB%AAA
2%BABBBAABA%AAA
1%BABBBAABAAA
%%BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

Greedy answer:
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get
merged before the next round

Slide courtesy of Ben Langmead

Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

%%ABA%ABB%AAA%AAB%BBB%BBA%BAB%BAA
2%BAAB%ABA%ABB%AAA%BBB%BBA%BAB
2%BABB%BAAB%ABA%AAA%BBB%BBA
2%BBAAB%BABB%ABA%AAA%BBB
2%BBBAAB%BABB%ABA%AAA
2%BBBAABA%BABB%AAA
2%BABBBAABA%AAA
1%BABBBAABAAA
%%BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

Greedy answer:
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get
merged before the next round

Slide courtesy of Ben Langmead

Note: approx. guarantee
is on length of the superstring

Actual result may be very different.

Shortest common superstring: greedy

%%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%TATATTG%GTACGGC%GCGTACG%ATATTGC
6%TATATTGC%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC%GCGTACG
6%CGCGTACG%TATATTGC%ATTATAT%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACG%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACGGC%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC
5%CGCGTACGGCGC%TATATTGCGC%ATTATAT%GCATTAT
5%CGCGTACGGCGC%GCATTATAT%TATATTGCGC
5%CGCGTACGGCGC%GCATTATATTGCGC
3%GCATTATATTGCGCGTACGGCGC
%%GCATTATATTGCGCGTACGGCGC

Input strings

Superstring

Greedy-SCS algorithm in action again (l = 3):

Slide courtesy of Ben Langmead

Results from quiz 1 & review

