CSE 549 Lecture 3:

Sequence Similarity &
Alignment

‘\\\w Stony Brook

University slides (w/*) courtesy of Carl Kingsford



Relatedness of Biological Sequence

Phylogenetic Tree of Life
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Consider an analogy
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https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

Sequence tells a story

* |f two sequences are similar, this provides
evidence of descent from a common ancestor

e Sequences are conserved at different rates

e \/ery similar sequence can indicate a very recent
common ancestor, or a highly conserved function



Why compare DNA or protein sequences?

Partial CTCF protein sequence in 8 organisms:

H. sapiens -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——--—-—————— POPVTPA
P. troglodytes —-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
C. lupus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
B. taurus —-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
M. musculus —EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--POPOPPPPPOPVAPA
R. norvegicus —EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPOPOPOQPOPOPVAPA
G. gallus —EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-——-—-—-—————— VSAEAPA
D. rerio DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDOMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.
® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

® |Interface to databases of genetic sequences.
® As a step in genome assembly, and other sequence analysis tasks.
® Provide hints about protein structure and function (next slides).

en.wikipedia.org CC3



http://en.wikipedia.org

Sequence can reveal structure

Bovine
pancreatic
trypsin
Inhibitor

(a) ldtk (b) 5pti

ldtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
S5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA



The Language of Strings

A string s is a finite sequence of characters

|s| denotes the length of the string — the number
of characters in the sequence.

A string is defined over an alphabet, 2
ZDNA — {A,T,C,G}

2rNA = {AU,C,G}
2 aminoAcid = {A, R,N, D, C,E, Q, G, H, I, L, K, M, F B, S, TW,Y,V}

The empty string is denoted € — |€| =0



The Language of Strings

Given two strings s,t over the same alphabet 2, we denote
the concatenation as st — this is the sequence of s followed
by the sequence of t

String s is a substring of t if there exist two (potentially empty)
strings u and v such that t = usv

String s is a subsequence of t if the characters of s appear in order
(but not necessarily consecutively) in t

%j
substring N subsequence

String s is a prefix/suffix of t if t = su/us — if neither s nor u are €,

then s is a proper prefix/suffix of t

+



The Simplest String Comparison Problem

Given: Two strings

a = ad=asa4...Adm

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet, %, like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete

e insert a character riddle — ridle nLtat; rlple

1nsert

triple



The String Alignment Problem

Parameters:

€ »

e “gap” is the cost of inserting a “-” character, representing an insertion
or deletion (insertion/deletion are dual operations depending on the
string)

e cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost
alignment. (often phrased as finding highest scoring alignment.)

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.



Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

V)
[l

The operations at our disposal

Insertion (into a ~ from b)
Mutation
(from a ~ insertion into b)

When we “delete a” character in a this is the same as inserting the

€¢C ¢¢ °

character “-“ in b. Conceptually, you can think of this as aligning the

deleted character with “-“. Under this model cost(x,-‘) = cost(’-',x) = gap
forany x € 2



Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

- LSt L

Cost of a matching is:

gap X #unmatched + Z cost(aj, bj)
(aiabj)

Edges are not allowed to cross!



Representing alignments as edit

transcripts

Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

|

v GCGTATGCGGCTAACGC Operations:
M = match, R = replace,

y: GCTﬁTGCGGCTATACGC I =insert into x, D = delete from x

_)"
x GCGTATGCGGCTAACGC
|| MMD
y:GC—TATGCGGCTATﬁCGC
) '
x GCGTATGCGGCTA-ACGC
O I I O I O O A O MMDMMMMMMMMMMI
wGC—TATGCGGCTATACGW
_)'
x GCGTATGCGGCTA-ACGC
L 1L ] MMDMMMMMMMMMMI MMMM

y: GC-TATGCGGCTATACGC

Slide courtesy of Ben Langmead



Representing edits as alignments

prin-ciple
BRREEERRP o
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR

misspell

mis-pell

(1 gap)
MMMIMMMM

aa-bb-ccaabb

X [ 1]

ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

prin-cip-le
LT T
prinncipal-
(3 gaps, 0 mm)
MMMMIMMMIMD

prehistoric

——-historic

(3 gaps)
DDDMMMMMMMM

al-go-rithm-
[ xx [ [X ]
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI



NCBI BLAST DNA Alignment

>gb|AC115706
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.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence
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How many alignments are there?

number of alignments

1070

1045

1 020

- ‘ ‘ | ‘ ‘ w | w w ‘ | ‘ ‘ | | ‘ | | ~— length of strings

20 40 60 80 100
min(m,n) m "
— ok
XOEEDS () ()

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences.”" BMC bioinformatics 5.1 (2014): 94.



How many alignments are there?

number of alignments

1070 -

085 # of atoms in the
| universe ~|08°

- ‘ ‘ | ‘ ‘ w | w w ‘ | ‘ ‘ | | ‘ | | ~— length of strings

20 40 60 80 100
min(m,n) m "
— ok
XOEEDS () ()

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences.”" BMC bioinformatics 15.1 (2014): 94.



Interlude: Dynamic Programming

General and powertul algorithm design technique

"Programming” in the mathematical sense —
nothing to do with e.g. code

To apply DP, we need optimal substructure and
overlapping subproblems

optimal substructure — can combine solutions to
"smaller” problems to generate solutions to “larger”
problems.

overlapping subproblems — solutions to
subproblems can be “re-used” iIn multiple contexts
(to solve multiple) larger problems



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1

def fib(n):

5
/////’ ‘\\\\ if n == or n ==
return
F4 F3 else:
///”\\\\\ return fib(n-1) + fib(n-

F3 2 Fo F

This recursive way of computing fib(n) is very inefticient!

What is the runtime of this approach (i.e. fib(n) = O(?))

)



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1

Fs def fib(n):
/\ fn==1o0rn==
-4 Fs return 1
/\ else:
Fs 5 = = return fib(n-1) + fib(n-2)
Fz/\ F

This recursive way of computing fib(n) is very inefticient!

Runtime of this approach is fib(n) = %cb ) =0(2n)

golden ratio



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

4

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

/ What is the “right order”?

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.



Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

/ What is the “right order”?

F1—=F2 2 F3 2 R4 2 k5

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.



Example 1: Fibonacci Sequence

Fn=Fn1+ Frn2 With b =F2 =1
How do we do better than O(¢n) ?
Take 2:

def fib(n):
1f n == or n ==
return
fm2, fml = 1,
for 1 1in xrange(Z, n):
fm2, fml = fml, fm2 + fml
return fml

We loop up to n, and perform an addition in each
iteration —> O(n); much better! Note: O(n) assumes
addition is constant, not true for large enough n.



Example 2: Shortest Path in a DAG

Let G = (V,E) be a directed acyclic graph (DAG) with
vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least
one) topological order of G — an ordering p(v1), p(v2), ...,
o(vn) such that for all e = (vi, vj) In E, p(vi) < p(Vv))

In other words, we can label the nodes of G such that all
edges point from a vertex with a smaller label to a vertex
with a larger label.



Example 2: Shortest Path in a DAG

topological ordering(G)

|
|
1
3

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Obtaining a topological ordering

Kahn's algorithm

Builds up a valid topo order node-by-node

L + Empty list that will contain the sorted elements
S + Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least one cycle)
else
return L (a topologically sorted order)

O(|V] + |E[); why?

https://en.wikipedia.org/wiki/Topological_sorting



Example 2: Shortest Path in a DAG

7

What's the distance from S to B — d(S,B) ?

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Example 2: Shortest Path in a DAG

First, | must go through A, so it’s at least d(S,A) + ©6

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Example 2: Shortest Path in a DAG

Then, there are 2 ways of getting to A — we choose the
shortest.

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Example 2: Shortest Path in a DAG

In general, d(S,X) is the
minimum value of d(S,Y) + d(Y,X) for all Y that precede X
and are connected by an edge

(8) (o) ) ~(B) D) ~(E)

/d(S,X) =miny|x) e {d(S,Y) + d(Y,X)}

This becomes the DP recurrence for our problem

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Example 2: Shortest Path in a DAG

The problem is solved efficiently by the following algorithm

initialize all dist(-) values to oo

dist(s) =0

for each v € V\{s}, in linearized order:
dist(v) = ming, ,\ep{dist(u) + l(u,v)}

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.



Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

(am,bn) are matched to each other
am 1S not matched at all

b, is not matched at all
am is matched to some b (j#n) and b, is matched to some ai (k=m).

==



Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

(am,bn) are matched to each other
am 1S not matched at all

b, is not matched at all
am is matched to some b (j#n) and b, is matched to some ai (k=m).

==

!
#4 can’'t happen! Why?



No Crossing Rule Forbids #4

4. am is matched to some b; (j # n) and b, is matched to some ax (k #m).

a

ak m

So, the only possibilities for what happens to the last characters are:
1. (am, bn) are matched to each other
2. am 1s not matched at all

3. bn 1s not matched at all



Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(a;, bj) + OPT(i —1,j — 1) match a;, b

OPT(i,j) = min ¢ gap + OPT (i — 1,)) a; is not matched
I gap + OPT(i,j — 1) b; is not matched
Cost of the optimal 1
alignment between Written in terms of
a:...a; and b;...b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =j x gap

(Aligning 1 characters to 0 characters must use i gaps.)



Computing OPT(i,j) Efticiently
We're ultimately interested in OPT(n,m), but we will compute all other

OPT(iy) (i < n,j < m) on the way to computing OPT(n,m).

Store those values in a 2D array: NOTE: observe the non-standard

notation here; OPT(i,j) is referring

OPT(H,\J') to column i, row j of the matrix.
9 | 9g \\
8 | 8¢ \

P ] o
5 | 59

e AN OPT(i, j-1)
3 | 3¢ \\//

2 | 2 B OPT(i-1, j-1)

0| O 1912939409 |59 |6g |79 |8g]|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12



Filling in the 2D Array

109

119

129

10

11

12




Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] = 1*gap

For Jj =1,...,n: A[0,]] = Jj*gap
For 1 = 1,...,m:
For j =1,...,n:

A[1,]J] = min(
cost(a[i],b[j:) + A[i_llj_l]l
gap + A[1i-1,]],
gap + A[1i,]J-1]

)
EndFor

EndFor
Return A[m,n]



Where's the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = O(m x n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).



Finding the actual alignment

OPT(i-1, ))

9g \\

8¢9 )

e

- ‘ - OPT(i, j)
— ! | /

29 / B

40 AN OPT(i, j-1)

> \EEANEe

29 ~OPT(i-1, j-1)

19

O |19 |29 |39 |49 |59 |6g |79 |8g|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12



gap cost = 3
mismatch cost = 1

A
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Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
e If you follow a diagonal pointer, add both characters to the alignment,

e Ifyou follow a left pointer, add a gap to the y-axis string and add the x-
axis character

e If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.



Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.



Another View: Recasting as a Graph

o

\edge from
(|_1 ’j_1) to (I!J)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)



Another View: Recasting as a Graph

How would you find a shortest path in this
graph efficiently?

\
edge from

(-1,j-1) to (i.))
has weight
cost(ai,bj)

Traceback path = a5
shortest path from (0,0)
to (m,n)



