
CSE 549 Lecture 3:
Sequence Similarity &

Alignment

slides (w/*) courtesy of Carl Kingsford

Relatedness of Biological Sequence

https://en.wikipedia.org/wiki/Phylogenetic_tree

Relatedness of Biological Sequence

https://en.wikipedia.org/wiki/Phylogenetic_tree

“Descent with modification”

Relatedness of Biological Sequence

https://en.wikipedia.org/wiki/Phylogenetic_tree

Organisms inherit genetic
material from ancestors,

but evolve
“independently”

Relatedness of Biological Sequence

https://en.wikipedia.org/wiki/Phylogenetic_tree

Organisms inherit genetic
material from ancestors,

but evolve
“independently”

most recent common
ancestor

“When Mrs. Bilbo Baggins of Bag
End announced that she would

shortly be celebrating his eleventh-
first birthday with a party of special
magnificence, there was much talk

and excitement in Hobbit-town”

“When Mr. Bilbo Baggens of Bag
End announced that he would

shortly be celebrating his eleventh-
first birthday with a party of special
magnificence, there was much talk

and excitement in Hobbiton”

Consider an analogy
“When Mr. Bilbo Baggins of Bag End
announced that he would shortly be

celebrating his eleventy-first
birthday with a party of special

magnificence, there was much talk
and excitement in Hobbiton”

+

“When Mr. Bilbo Baggins of Bag End
announced that he would shortly be

celebrating his eleventh-first
birthday with a party of special

magnificence, there was much talk
and excitement in Hobbiton”

“When Mr. Bilbo Baggins of Bag End
announced that he would shortly be

celebrating his eleventh-first
birthday with a party of special

magnificence, there was much talk
and excitement in Hobbit-town”

+:https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

Sequence tells a story
• If two sequences are similar, this provides
evidence of descent from a common ancestor

• Sequences are conserved at different rates

• Very similar sequence can indicate a very recent
common ancestor, or a highly conserved function

Why compare DNA or protein sequences?

Partial CTCF protein sequence in 8 organisms:

H. sapiens -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
P. troglodytes -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
C. lupus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
B. taurus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE----------PQPVTPA
M. musculus -EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--PQPQPPPPPQPVAPA
R. norvegicus -EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPQPQPQPQPQPVAPA
G. gallus -EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE----------VSAEAPA
D. rerio DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDQMGLLDQAPPSVPIP-APA

• Identify important sequences by finding conserved regions.

• Find genes similar to known genes.

• Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

• Interface to databases of genetic sequences.

• As a step in genome assembly, and other sequence analysis tasks.

• Provide hints about protein structure and function (next slides).

*en.wikipedia.org CC3

http://en.wikipedia.org

Sequence can reveal structure

1dtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

(a) 1dtk (b) 1dtk5pti

*

dendrotoxin K

Bovine
pancreatic

trypsin
inhibitor

The Language of Strings

A string s is a finite sequence of characters

|s| denotes the length of the string — the number
of characters in the sequence.

A string is defined over an alphabet, Σ

ΣDNA = {A,T,C,G}
ΣRNA = {A,U,C,G}
ΣAminoAcid = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}

+

The empty string is denoted ϵ — |ϵ| = 0

The Language of Strings
Given two strings s,t over the same alphabet Σ, we denote
the concatenation as st — this is the sequence of s followed
by the sequence of t

+

String s is a substring of t if there exist two (potentially empty)
strings u and v such that t = usv

String s is a prefix/suffix of t if t = su/us — if neither s nor u are ϵ,
then s is a proper prefix/suffix of t

String s is a subsequence of t if the characters of s appear in order
(but not necessarily consecutively) in t

vacation

cat cansubstring subsequence

The Simplest String Comparison Problem

Given: Two strings
a = a1a2a3a4...am
b = b1b2b3b4...bn

where ai, bi are letters from some alphabet, Σ, like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

• mutate (replace) a character
• delete a character
• insert a character

*

The String Alignment Problem

Parameters:

• “gap” is the cost of inserting a “-” character, representing an insertion
or deletion (insertion/deletion are dual operations depending on the
string)

• cost(x,y) is the cost of aligning character x with character y. 
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

• Can compute the edit distance by finding the lowest cost
alignment. (often phrased as finding highest scoring alignment.)

• Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap × number of - characters inserted.

*

G C G T A T G A G G C T A A C G C

G C T A T G C G G C T A T A C G C

a =

b =
The operations at our disposal

Insertion (into a ~ deletion from b)
Mutation
Deletion (from a ~ insertion into b)

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

When we “delete a” character in a this is the same as inserting the
character “-“ in b. Conceptually, you can think of this as aligning the
deleted character with “-“. Under this model cost(x,’-‘) = cost(‘-‘,x) = gap
for any x ∈ Σ

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

Cost of a matching is:

Edges are not allowed to cross!

G C G T A T G A G G C T A A C G C

G C T A T G C G G C T A T A C G C

a =

b =

*

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Representing alignments as edit
transcripts

+

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Edit distance
Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

G C G T A T G C G G C T A A C G C

G C T A T G C G G C T A T A C G C

G C G T A T G C G G C T A A C G C
| |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

G C G T A T G C G G C T A - A C G C
| | | | | | | | | | | | | | | |
G C - T A T G C G G C T A T A C G C

x:

y:

x:

y:

x:

y:

x:

y:

MMI

MMIMMMMMMMMMMD

Operations:
M = match, R = replace,
I = insert into x, D = delete from x

MMIMMMMMMMMMMDMMMM

Slide courtesy of Ben Langmead

Representing edits as alignments
prin-ciple
|||| |||XX
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR

misspell
||| ||||
mis-pell
(1 gap)
MMMIMMMM

prin-cip-le
|||| ||| |
prinncipal-
(3 gaps, 0 mm)
MMMMIMMMIMD

prehistoric
 ||||||||
---historic
(3 gaps)
DDDMMMMMMMM

aa-bb-ccaabb
|X || | | |
ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

al-go-rithm-
|| XX ||X |
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI

*

NCBI BLAST DNA Alignment

*

How many alignments are there?

f(n,m) =

min(m,n)X

k=0

2k
✓
m

k

◆✓
n

k

◆

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

20 40 60 80 100
length of strings

1020

1045

1070

number of alignments

How many alignments are there?

f(n,m) =

min(m,n)X

k=0

2k
✓
m

k

◆✓
n

k

◆

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

20 40 60 80 100
length of strings

1020

1045

1070

number of alignments

of atoms in the
universe ~1080

Interlude: Dynamic Programming

General and powerful algorithm design technique

“Programming” in the mathematical sense —
nothing to do with e.g. code

To apply DP, we need optimal substructure and
overlapping subproblems

optimal substructure — can combine solutions to
“smaller” problems to generate solutions to “larger”
problems.

overlapping subproblems — solutions to
subproblems can be “re-used” in multiple contexts
(to solve multiple) larger problems

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1

F5

F4 F3

F3 F2 F2 F1

F2 F1

This recursive way of computing fib(n) is very inefficient!

What is the runtime of this approach (i.e. fib(n) = O(?))

def fib(n):
 if n == 1 or n == 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1

F5

F4 F3

F3 F2 F2 F1

F2 F1

This recursive way of computing fib(n) is very inefficient!

def fib(n):
 if n == 1 or n == 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

Runtime of this approach is fib(n) = O(φn) =O(2n)
golden ratio

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1
How do we do better than O(φn) ?

F5

F4 F3

F3 F2 F2 F1

F2 F1

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1
How do we do better than O(φn) ?

F5

F4 F3

F3 F2 F2 F1

F2 F1

If I compute the solutions in the “right order”, I
don’t need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1
How do we do better than O(φn) ?

F5

F4 F3

F3 F2 F2 F1

F2 F1

If I compute the solutions in the “right order”, I
don’t need to waste time re-computing the
same values.

What is the “right order”?

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1
How do we do better than O(φn) ?

F5

F4 F3

F3 F2 F2 F1

F2 F1

If I compute the solutions in the “right order”, I
don’t need to waste time re-computing the
same values.

What is the “right order”?
F1 →F2 →F3 →F4 →F5 . . .

Example 1: Fibonacci Sequence

Fn = Fn-1 + Fn-2 with F1 = F2 = 1
How do we do better than O(φn) ?
Take 2:

def fib(n):
 if n == 1 or n == 2:
 return 1
 fm2, fm1 = 1, 1
 for i in xrange(2, n):
 fm2, fm1 = fm1, fm2 + fm1
 return fm1

We loop up to n, and perform an addition in each
iteration —> O(n); much better! Note: O(n) assumes
addition is constant, not true for large enough n.

Example 2: Shortest Path in a DAG

Let G = (V,E) be a directed acyclic graph (DAG) with
vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least
one) topological order of G — an ordering p(v1), p(v2), …,
p(vn) such that for all e = (vi, vj) in E, p(vi) < p(vj)

In other words, we can label the nodes of G such that all
edges point from a vertex with a smaller label to a vertex
with a larger label.

Example 2: Shortest Path in a DAG

G

topological ordering(G)

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Obtaining a topological ordering

https://en.wikipedia.org/wiki/Topological_sorting

Kahn's algorithm

Builds up a valid topo order node-by-node

O(|V| + |E|); why?

Example 2: Shortest Path in a DAG

What’s the distance from S to B — d(S,B) ?

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

First, I must go through A, so it’s at least d(S,A) + 6

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

Then, there are 2 ways of getting to A — we choose the
shortest.

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

In general, d(S,X) is the
minimum value of d(S,Y) + d(Y,X) for all Y that precede X

and are connected by an edge

d(S,X) = min Y | (Y,X) ∈ E {d(S,Y) + d(Y,X)}

This becomes the DP recurrence for our problem

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

The problem is solved efficiently by the following algorithm

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = a1a2a3a4...am
b = b1b2b3b4...bn

One of these possibilities must hold:

1. (am,bn) are matched to each other
2. am is not matched at all
3. bn is not matched at all
4. am is matched to some bj (j≠n) and bn is matched to some ak (k≠m).

*

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = a1a2a3a4...am
b = b1b2b3b4...bn

#4 can’t happen! Why?

One of these possibilities must hold:

1. (am,bn) are matched to each other
2. am is not matched at all
3. bn is not matched at all
4. am is matched to some bj (j≠n) and bn is matched to some ak (k≠m).

*

No Crossing Rule Forbids #4

a
m

b
n

a
k

b
k

So, the only possibilities for what happens to the last characters are:

1. (am, bn) are matched to each other

2. am is not matched at all

3. bn is not matched at all

4. am is matched to some bj (j ≠ n) and bn is matched to some ak (k ≠m).

*

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

Cost of the optimal
alignment between
a1...ai and b1...bj

Written in terms of
the costs of smaller

problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case:

(Aligning i characters to 0 characters must use i gaps.)

*

Computing OPT(i,j) Efficiently
We’re ultimately interested in OPT(n,m), but we will compute all other
OPT(i,j) (i ≤ n, j ≤ m) on the way to computing OPT(n,m).

Store those values in a 2D array:

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

OPT(i, j)

OPT(i, j-1)

OPT(i-1, j)

OPT(i-1, j-1)

i

j

*

NOTE: observe the non-standard
notation here; OPT(i,j) is referring

to column i, row j of the matrix.

Filling in the 2D Array

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

*

Edit Distance Computation

EditDistance(X,Y):
 For i = 1,...,m: A[i,0] = i*gap
 For j = 1,...,n: A[0,j] = j*gap

 For i = 1,...,m:
 For j = 1,...,n:
 A[i,j] = min(
 cost(a[i],b[j]) + A[i-1,j-1],
 gap + A[i-1,j],
 gap + A[i,j-1]
)
 EndFor
 EndFor
 Return A[m,n]

*

Running Time
Number of entries in array = O(m × n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Where’s the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

*

Finding the actual alignment

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

OPT(i, j)

OPT(i, j-1)

OPT(i-1, j)

OPT(i-1, j-1)

i

j

*

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6

A 3 0

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

gap cost = 3
mismatch cost = 1

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6

A 3 0 3

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6

A 3 0 3 6

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6 3

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27

A 24

G 21

T 18

T 15

G 12

C 9

A 6 3 0

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Example

C 27 24 21 18 15 13 10 8 7 5 5 8 10

A 24 21 18 15 12 10 7 6 4 4 7 10 13

G 21 18 15 12 9 7 5 3 4 7 10 13 16

T 18 15 12 9 7 4 2 4 7 10 13 16 19

T 15 12 9 6 4 1 4 7 10 13 16 19 22

G 12 9 6 3 1 4 7 10 13 16 19 22 25

C 9 6 3 1 4 7 10 13 16 19 22 25 27

A 6 3 0 3 6 9 12 15 18 21 24 27 30

A 3 0 3 6 9 12 15 18 21 24 27 30 33

0 3 6 9 12 15 18 21 24 27 30 33 36

A A G G T A T G A A T C

Outputting the Alignment
Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).

• If you follow a diagonal pointer, add both characters to the alignment,

• If you follow a left pointer, add a gap to the y-axis string and add the x-
axis character

• If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

*

Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

*

Another View: Recasting as a Graph

(m,n)

(0,0)

a1 a2 a3 a4 a5

b1

b2

b3

b4

gap

gap

edge from
(i-1,j-1) to (i,j)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)

*

Another View: Recasting as a Graph

(m,n)

(0,0)

a1 a2 a3 a4 a5

b1

b2

b3

b4

gap

gap

edge from
(i-1,j-1) to (i,j)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)

*

How would you find a shortest path in this
graph efficiently?

