CSE 549 Lecture 3:

Sequence Similarity &
Alignment

‘\\\w Stony Brook

University slides (w/*) courtesy of Carl Kingsford

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous Si
Spirochetes bacteria Entamoebae mcl>rlrclies Animals
Gram Methanosarcina Fung!
~\ Positives| nrathanobacterium Halophiles
Proteobacteria Plants
. Methanococcus
Cyanobacteria Ciliates
T. celer
Planctomyces Thermoproteus Flagellates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga
Microsporidia

Thermotoga

_ Diplomonads
Aquifex —

https://en.wikipedia.org/wiki/Phylogenetic_tree

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous sli
Spirochetes bacteria Entamoebae mérlrgies Animals
Gram Methanosarcina Fungi
~\ Positives| nrathanobacterium Halophiles
Proteobacteria Plants
] Methanococcus
Cyanobacteria Ciliates
T. celer
Planctomyces Thermoproteus Flagellates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga
Microsporidia

Thermotoga

_ Diplomonads
Aquifex —

“Descent with modification”

https://en.wikipedia.org/wiki/Phylogenetic_tree

Relatedness of Biological Sequence
Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous SI;
Spirochetes bacteria Entamoebae m(;rlrc‘iz Animals
Gram Methanosarcina Fung
.\ Positives| pethanobacterium Halophiles
Proteobacteria Plants
] Methanococcus
Cyanobacteria Ciliates
T. celer
Planctomyces Thermoproteus F|age||ates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga
Microsporidia

Thermotoga

Diplomonads

Organisms inherit genetic
material from ancestors,
but evolve
‘Independently”

Aquifex —

https://en.wikipedia.org/wiki/Phylogenetic_tree

Relatedness of Biological Sequence
Phylogenetic Tree of Life

Bacteria Archaea Eukaryota
Green
Filamentous SI;
Spirochetes bacteria Entamoebae m(')?;i Animals
Gram Methanosarcina Fung
.\ Positives| pethanobacterium Halophiles
Proteobacteria Plants

) Methanococcus

Cyanobacteria / Ciliates
T. celer
Planctomyces Thermoproteus Flagellates
Pyrodicticum
Bacteroides Trichomonads
Cytophaga T— < | N
. most recent common Microsporidia
Thermotoga
Aauit — ancestor Diplomonads
uifex — : : : :
a " Organisms inherit genetic
material from ancestors,
but evolve
(13 1)
iIndependently

https://en.wikipedia.org/wiki/Phylogenetic_tree

Consider an analogy

+

THE
”||()\\\llll’

S —

“When Mr. Bilbo Baggins of Bag End |
announced that he would shortly be

OF THE RING

celebrating his eleventy-first

) birthday with a party of special

magnificence, there was much talk
and excitement in Hobbiton”

J

JWhen Mr. Bilbo Baggins of Bag End

witwe | announced that he would shortly be

v celebrating his eleventh-first

.\ birthday with a party of special

magnificence, there was much talk
and excitement in Hobbiton”

End announced that he would
shortly be celebrating his eleventh-

J “When Mr. Bilbo Baggens of Bag

magnificence, there was much talk
and excitement in Hobbiton”

\[first birthday with a party of special

announced that he would shortly be
celebrating his eleventh-first
1) - birthday with a party of special
magnificence, there was much talk
and excitement in Hobbit-town”

”||()\\\IIIP
OF THE RING

JWhen Mr. Bilbo Baggins of Bag End

J

N

“When . Bilbo Baggins of Bag
End announced that would
shortly be celebrating his eleventh-
first birthday with a party of special
magnificence, there was much talk
and excitement in Hobbit-town”

~\

+:https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

https://en.wikipedia.org/wiki/The_Fellowship_of_the_Ring

Sequence tells a story

* |f two sequences are similar, this provides
evidence of descent from a common ancestor

e Sequences are conserved at different rates

e \/ery similar sequence can indicate a very recent
common ancestor, or a highly conserved function

Why compare DNA or protein sequences?

Partial CTCF protein sequence in 8 organisms:

H. sapiens -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——--—-—————— POPVTPA
P. troglodytes —-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
C. lupus -EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
B. taurus —-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
M. musculus —EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--POPOPPPPPOPVAPA
R. norvegicus —EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPOPOPOQPOPOPVAPA
G. gallus —EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-——-—-—-—————— VSAEAPA
D. rerio DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDOMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.
® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

® |Interface to databases of genetic sequences.
® As a step in genome assembly, and other sequence analysis tasks.
® Provide hints about protein structure and function (next slides).

en.wikipedia.org CC3

http://en.wikipedia.org

Sequence can reveal structure

Bovine
pancreatic
trypsin
Inhibitor

(a) ldtk (b) 5pti

ldtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
S5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

The Language of Strings

A string s is a finite sequence of characters

|s| denotes the length of the string — the number
of characters in the sequence.

A string is defined over an alphabet, 2
ZDNA — {A,T,C,G}

2rNA = {AU,C,G}
2 aminoAcid = {A, R,N, D, C,E, Q, G, H, I, L, K, M, F B, S, TW,Y,V}

The empty string is denoted € — |€| =0

The Language of Strings

Given two strings s,t over the same alphabet 2, we denote
the concatenation as st — this is the sequence of s followed
by the sequence of t

String s is a substring of t if there exist two (potentially empty)
strings u and v such that t = usv

String s is a subsequence of t if the characters of s appear in order
(but not necessarily consecutively) in t

%j
substring N subsequence

String s is a prefix/suffix of t if t = su/us — if neither s nor u are €,

then s is a proper prefix/suffix of t

+

The Simplest String Comparison Problem

Given: Two strings

a = ad=asa4...Adm

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet, %, like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete

e insert a character riddle — ridle nLtat; rlple

1nsert

triple

The String Alignment Problem

Parameters:

€ »

e “gap” is the cost of inserting a “-” character, representing an insertion
or deletion (insertion/deletion are dual operations depending on the
string)

e cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost
alignment. (often phrased as finding highest scoring alignment.)

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

V)
[l

The operations at our disposal

Insertion (into a ~ from b)
Mutation
(from a ~ insertion into b)

When we “delete a” character in a this is the same as inserting the

€¢C ¢¢ °

character “-“ in b. Conceptually, you can think of this as aligning the

deleted character with “-“. Under this model cost(x,-‘) = cost(’-',x) = gap
forany x € 2

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.

Looking for a low-cost matching (pairing) between the sequences.

- LSt L

Cost of a matching is:

gap X #unmatched + Z cost(aj, bj)
(aiabj)

Edges are not allowed to cross!

Representing alignments as edit

transcripts

Can think of edits as being introduced by an optimal editor working left-to-right.
Edit transcript describes how editor turns x into y.

|

v GCGTATGCGGCTAACGC Operations:
M = match, R = replace,

y: GCTﬁTGCGGCTATACGC I =insert into x, D = delete from x

_)"
x GCGTATGCGGCTAACGC
|| MMD
y:GC—TATGCGGCTATﬁCGC
) '
x GCGTATGCGGCTA-ACGC
O I I O I O O A O MMDMMMMMMMMMMI
wGC—TATGCGGCTATACGW
_)'
x GCGTATGCGGCTA-ACGC
L 1L] MMDMMMMMMMMMMI MMMM

y: GC-TATGCGGCTATACGC

Slide courtesy of Ben Langmead

Representing edits as alignments

prin-ciple
BRREEERRP o
prinncipal
(1 gap, 2 mm)
MMMMIMMMRR

misspell

mis-pell

(1 gap)
MMMIMMMM

aa-bb-ccaabb

X [1]

ababbbc-a-b-
(5 gaps, 1 mm)
MRIMMIMDMDMD

prin-cip-le
LT T
prinncipal-
(3 gaps, 0 mm)
MMMMIMMMIMD

prehistoric

——-historic

(3 gaps)
DDDMMMMMMMM

al-go-rithm-
[xx [[X]
alKhwariz-mi
(4 gaps, 3 mm)
MMIRRIMMRDMI

NCBI BLAST DNA Alignment

>gb|AC115706

Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query

Sbjct

1650

56838

1710

56896

1769

56948

1829

57008

1889

57056

1943

57115

2003

57169

2063

57225

gtgtgtgtgggtgeacatttgtgtgtgtgtgegectgtgtgtgtgggtgectgtgtggt
NRRRRRNNN . e rerrrrrrr E o rrrrrer LEE T T
GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT

gtg-gggcacattigtgtgtgtgtgtgtgeectgtgtgtgggtgeacatitgigtgtgtge
AR L 1 O
GTCCGGGCA-—---~ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC

ctgtgtgtgtgtgectgtgtgtgggggtgeacatttgtgtgtgigtgtgectgtgtgtegg
It B B B
CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT

gggtgecacattigtgtgtgtgtgtgeetgtgtgtgtgggtgeacatttgtgigtgtgtgt
N U R A NERRRRRR RN

F e evem—e CATCTGTGTGTATGTGTG--TGTGAGAGTGCATGCA----TGTGTGTGTGAGT

gectgtgtgt-—gtgggtgeacatttgtgtgtgtgtgectgtg--tgtgt--gggrgeac
U I I B I B O B
TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC

atttgtgtgtgtgtgtgectgtgtgtgtgggtgeacatitgtgtgtgtgectgtgtgtgg
I A O B rrereerr rerernd
ATCTGTGTATGTGTGTG--TGTGTGAGTTAGTTCA----TCTGTGTGTGAGAGTGTGTGA

gtgcacattigtgtgtgtgtgectgtgtgtgtgtgectgtgtgtgtgggtgeacatitgt
A I I I O O
G--CTCATCTGTGTGTGAGTTCATCTGTATGAGTG--TGTGTATGTGTGTGTACAAATGA

T LT T T
GTTCATCTGTGCATGTGTGTGTG-—-——--~ TTTAAGTGTGTTCATCTG--TGTGCGTGT

.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

1709

56895

1768

56947

1828

57007

1888

57055

1942

57114

2002

57168

2062

57224

2122

57274

How many alignments are there?

number of alignments

1070

1045

1 020

- ‘ ‘ | ‘ ‘ w | w w ‘ | ‘ ‘ | | ‘ | | ~— length of strings

20 40 60 80 100
min(m,n) m "
— ok
XOEEDS () ()

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences.”" BMC bioinformatics 5.1 (2014): 94.

How many alignments are there?

number of alignments

1070 -

085 # of atoms in the
| universe ~|08°

- ‘ ‘ | ‘ ‘ w | w w ‘ | ‘ ‘ | | ‘ | | ~— length of strings

20 40 60 80 100
min(m,n) m "
— ok
XOEEDS () ()

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences.”" BMC bioinformatics 15.1 (2014): 94.

Interlude: Dynamic Programming

General and powertul algorithm design technique

"Programming” in the mathematical sense —
nothing to do with e.g. code

To apply DP, we need optimal substructure and
overlapping subproblems

optimal substructure — can combine solutions to
"smaller” problems to generate solutions to “larger”
problems.

overlapping subproblems — solutions to
subproblems can be “re-used” iIn multiple contexts
(to solve multiple) larger problems

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1

def fib(n):

5
/////’ ‘\\\\ if n == or n ==
return
F4 F3 else:
///”\\\\\ return fib(n-1) + fib(n-

F3 2 Fo F

This recursive way of computing fib(n) is very inefticient!

What is the runtime of this approach (i.e. fib(n) = O(?))

)

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1

Fs def fib(n):
/\ fn==1o0rn==
-4 Fs return 1
/\ else:
Fs 5 = = return fib(n-1) + fib(n-2)
Fz/\ F

This recursive way of computing fib(n) is very inefticient!

Runtime of this approach is fib(n) = %cb) =0(2n)

golden ratio

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

4

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

/ What is the “right order”?

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fnaa+ Fno with By =F2 =1
How do we do better than O(¢n) ?

/ What is the “right order”?

F1—=F2 2 F3 2 R4 2 k5

It | compute the solutions in the “right order”, |
don’'t need to waste time re-computing the
same values.

Example 1: Fibonacci Sequence

Fn=Fn1+ Frn2 With b =F2 =1
How do we do better than O(¢n) ?
Take 2:

def fib(n):
1f n == or n ==
return
fm2, fml = 1,
for 1 1in xrange(Z, n):
fm2, fml = fml, fm2 + fml
return fml

We loop up to n, and perform an addition in each
iteration —> O(n); much better! Note: O(n) assumes
addition is constant, not true for large enough n.

Example 2: Shortest Path in a DAG

Let G = (V,E) be a directed acyclic graph (DAG) with
vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least
one) topological order of G — an ordering p(v1), p(v2), ...,
o(vn) such that for all e = (vi, vj) In E, p(vi) < p(Vv))

In other words, we can label the nodes of G such that all
edges point from a vertex with a smaller label to a vertex
with a larger label.

Example 2: Shortest Path in a DAG

topological ordering(G)

|
|
1
3

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Obtaining a topological ordering

Kahn's algorithm

Builds up a valid topo order node-by-node

L + Empty list that will contain the sorted elements
S + Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least one cycle)
else
return L (a topologically sorted order)

O(|V] + |E[); why?

https://en.wikipedia.org/wiki/Topological_sorting

Example 2: Shortest Path in a DAG

7

What's the distance from S to B — d(S,B) ?

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

First, | must go through A, so it’s at least d(S,A) + ©6

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

Then, there are 2 ways of getting to A — we choose the
shortest.

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

In general, d(S,X) is the
minimum value of d(S,Y) + d(Y,X) for all Y that precede X
and are connected by an edge

(8) (o)) ~(B) D) ~(E)

/d(S,X) =miny|x) e {d(S,Y) + d(Y,X)}

This becomes the DP recurrence for our problem

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Example 2: Shortest Path in a DAG

The problem is solved efficiently by the following algorithm

initialize all dist(-) values to oo

dist(s) =0

for each v € V\{s}, in linearized order:
dist(v) = ming, ,\ep{dist(u) + l(u,v)}

Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, Inc., 2006.

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

(am,bn) are matched to each other
am 1S not matched at all

b, is not matched at all
am is matched to some b (j#n) and b, is matched to some ai (k=m).

==

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d2Aasa4...Am

b — b1b2b3b4...bn

One of these possibilities must hold:

(am,bn) are matched to each other
am 1S not matched at all

b, is not matched at all
am is matched to some b (j#n) and b, is matched to some ai (k=m).

==

!
#4 can’'t happen! Why?

No Crossing Rule Forbids #4

4. am is matched to some b; (j # n) and b, is matched to some ax (k #m).

a

ak m

So, the only possibilities for what happens to the last characters are:
1. (am, bn) are matched to each other
2. am 1s not matched at all

3. bn 1s not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(a;, bj) + OPT(i —1,j — 1) match a;, b

OPT(i,j) = min ¢ gap + OPT (i — 1,)) a; is not matched
I gap + OPT(i,j — 1) b; is not matched
Cost of the optimal 1
alignment between Written in terms of
a:...a; and b;...b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =j x gap

(Aligning 1 characters to 0 characters must use i gaps.)

Computing OPT(i,j) Efticiently
We're ultimately interested in OPT(n,m), but we will compute all other

OPT(iy) (i < n,j < m) on the way to computing OPT(n,m).

Store those values in a 2D array: NOTE: observe the non-standard

notation here; OPT(i,j) is referring

OPT(H,\J') to column i, row j of the matrix.
9 | 9g \\
8 | 8¢ \

P] o
5 | 59

e AN OPT(i, j-1)
3 | 3¢ \\//

2 | 2 B OPT(i-1, j-1)

0| O 1912939409 |59 |6g |79 |8g]|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12

Filling in the 2D Array

109

119

129

10

11

12

Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] = 1*gap

For Jj =1,...,n: A[0,]] = Jj*gap
For 1 = 1,...,m:
For j =1,...,n:

A[1,]J] = min(
cost(a[i],b[j:) + A[i_llj_l]l
gap + A[1i-1,]],
gap + A[1i,]J-1]

)
EndFor

EndFor
Return A[m,n]

Where's the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = O(m x n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Finding the actual alignment

OPT(i-1,))

9g \\

8¢9)

e

- ‘ - OPT(i, j)
— ! | /

29 / B

40 AN OPT(i, j-1)

> \EEANEe

29 ~OPT(i-1, j-1)

19

O |19 |29 |39 |49 |59 |6g |79 |8g|9g | 109 | 119 | 129

o 1 2 3 4 5 6 7 8 9 10 11 12

gap cost = 3
mismatch cost = 1

A

Example

27

24

21

18

15

12

> > O O 4 4 O > O

o | w6 O

Example

> > O O 4 4 O > O

21

24

27

30

33

36

Example

> > O O 4 4 O > O

21

24

27

30

33

36

Example

27

24

21

18

15

12

> > O O 4 4 O > O

12

15

—1 3%

24

7

o | w6 O

12

15

18

21

2/

30

Example

27

24

21

18

15

12

> > O O 4 4 O > O

12

15

—1 3%

24

7

o | W | o

12

15

18

21

2/

30

> WO« W

Example

27

24

21

18

15

12

> > O O 4 4 O > O

12

15

—1 3%

24

7

o | W | o

12

15

18

21

2/

30

> WO« W

N
\]

N
—

38

N —
N

<

—
oo

[<

10

N
<

—_h
\

—
@)

~10+

—

—_—k
<

N
L

—h

-4

—
NSO

—19«

L\

22
/

I'd
D4«

!
W
A

%

> > O O 4 4 O > O

NN

7

O WO O«

A

!
1

30«

T | O W OECWE0O) «— O

N
\]

N
—

38

N —
N

<

—
oo

7«

10

N
<

—_h
\

—
@)

~10+

—

—_—k
<

N
L

—h

-4

—
NSO

—19«

L\

22
/

I'd
D4«

!
W
A

%

> > O O 4 4 O > O

NN

7

O WO O«

A

!
1

30«

T | O W OECWE0O) «— O

N
\]

N
—

38

N —
N

<

—
oo

7«

10

N
<

—_h
\

—
@)

~10+

—

—_—k
<

N
L

—h

-4

—
NSO

—19«

L\

22
/

I'd
D4«

!
W
A

%

> > O O 4 4 O > O

NN

7

O WO O«

A

!
1

30«

T | O W OECWE0O) «— O

N
\]

N
—

38

N —
N

<

—
oo

7«

10

N
<

—_h
\

—
@)

~10+

—

—_—k
<

N
L

—h

-4

—
NSO

—19«

L\

22
/

I'd
D4«

!
W
A

%

> > O O 4 4 O > O

NN

7

O WO O«

A

!
1

30«

T | O W OECWE0O) «— O

N
\]

N
—

38

N —
N

<

—
oo

7«

10

N
<

—_h
\

—
@)

~10+

—

—_—k
<

N
L

—h

-4

—
NSO

—19«

L\

22
/

I'd
D4«

!
O8]
A

%

> > O O 4 4 O > O

NN

7

O WO O«

A

!
1

30«

> | O W O WE0) <O+

N
~
N
—1

38

<

N €—
_-b*
—_—
@0

7«

10

<
\

N
—L
—
@)

~10+

<
L

—
—k
N

-4

—h

—
NSO

—19«

L\

22
/

f

I'd
D4«

%

> > O O 4 4 O > O

NN

7

O WO O«

A

*

30«

> | O W O WE0) <O+

N
~
N
—1

38

<

N €—
_-b*
—_—
@0

7«

10

<
\

N
—L
—
@)

~10+

<
L

—
—k
N

-4

—h

—
NSO

—19«

L\

22
/

f

I'd
D4«

%

> > O O 4 4 O > O

NN

7

O WO O«

A

*

30«

> | O W O WE0) <O+

N
~
N
—1

38

<

N €—
_-b*
—_—
@0

7«

10

<
\

N
—L
—
@)

~10+

<
L

—
—k
N

-4

—h

—
NSO

—19«

L\

22
/

f

I'd
D4«

%

> > O O 4 4 O > O

NN

7

O WO O«

A

*

30«

> | O W O WE0) <O+

N
~
N
—1

38

<

N €—
_-b*
—_—
@0

7«

10

<
\

N
—L
—
@)

~10+

<
L

—
—k
N

-4

—h

—
NSO

—19«

L\

22
/

f

I'd
D4«

%

> > O O 4 4 O > O

NN

7

O WO O«

A

*

30«

> | O W O WE0) <O+

N
~
N
—1

38

<

N €—
_-b*
—_—
@0

7«

10

<
\

N
—L
—
@)

~10+

<
L

—
—k
N

-4

—h

—
NSO

—19«

L\

22
/

f

I'd
D4«

%

> > O O 4 4 O > O

NN

7

O WO O«

A

*

30«

> | O W O WE0) <O+

N
\]

38

N —
N

7«

10

N
<

—_h
\

~10+

—

-4

—h

—
NSO

—19«

22
/

I'd
D4«

%

> > O O 4 4 O > O

7

O WO O«

A

30«

N
\]

38

N —
N

7«

10

N
<

—_h
\

~10+

—

-4

—h

—
NSO

—19«

22
/

I'd
D4«

— O)e— O «

%

> > O O 4 4 O > O

OV)

7

-
4

30«

Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
e If you follow a diagonal pointer, add both characters to the alignment,

e Ifyou follow a left pointer, add a gap to the y-axis string and add the x-
axis character

e If you follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of
dynamic programming.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

Another View: Recasting as a Graph

o

\edge from
(|_1 ’j_1) to (I!J)
has weight
cost(ai,bj)

Traceback path =
shortest path from (0,0)
to (m,n)

Another View: Recasting as a Graph

How would you find a shortest path in this
graph efficiently?

\
edge from

(-1,j-1) to (i.))
has weight
cost(ai,bj)

Traceback path = a5
shortest path from (0,0)
to (m,n)

