
CSE 549:
Computational Biology

Local Alignment & Gaps Penalties

slides (w/*) courtesy of Carl Kingsford

Maximization vs. Minimization

Edit distance:

Sequence Similarity: replace the min with a max — find the highest-scoring
alignment. Gap costs and bad matches usually get a negative “score”.

gap penalty → gap score (probably negative)
match cost → match score

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

OPT(i, j) = min

8
>><

>>:

cost(xi, yj) + OPT(i� 1, j � 1)

cgap +OPT(i� 1, j)

cgap +OPT(i, j � 1)

match xi, yj

xi is unmatched
yj is unmatched

*

Alignment Categories
Global: Require an end-to-end alignment of x,y

Semi-global (glocal): Gaps at the beginning or end of x or y are
free — useful when one string is significantly shorter than the other
or for finding overlaps between strings

Local: Find the highest scoring alignment between x’ a substring
of x and y’ a substring of y — useful for finding similar regions in
strings that may not be globally similar

x
y

x

x

y

y

x
yor

Alignment Categories Motivation

Global: x and y are similar proteins from closely-related species

Semi-global (glocal): x and y are sequencing reads we are
trying to assemble. We want to find reads where the right end (suffix)
of one matches the left end (prefix) of another.

x
y

x
y

x
yor

Local: x and y are similar proteins from potentially distantly
related species. We don’t expect the entire protein to be
conserved, but certain “domains” should be.

x
y

Alignment Categories Motivation

It’s possible and somewhat
common for specific domains to
be conserved, but not the entire

protein sequence / structure.

Semi-global Alignment Example

Motivation:
Useful for finding similarities that global
alignments wouldn’t. Also, can view “read
mapping” as a variant of the semi-global
alignment problem. Want to align entire read
but it’s a tiny fraction of the genome. Note:
won’t use semi-global alignment with the full
genome for read mapping in practice.

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are
free. Useful when one one string is significantly shorter than the
other or we want to find an overlap between the suffix of one string
and a prefix of the other

x
y

sometimes called “cost-free-ends” or “fitting” alignment

sometimes called “overlap” alignment

Semi-global Alignment Example

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are
free — one useful case is when one string is significantly shorter than
the other

sometimes called “cost-free-ends” or “fitting” alignment

We’ll discuss the “fitting” variant for in the next few
slides for simplicity, but the same basic idea
applies for the “overlap” variant as well.

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

OPT(i, j)

OPT(i, j-1)

OPT(i-1, j)

OPT(i-1, j-1)

i

j

Recall: Global Alignment Matrix
OPT(i,j) contains the score for the best alignment between:

the first i characters of string x [prefix i of x]

the first j character of string y [prefix j of y]

x

y

*

NOTE: observe the non-standard
notation here; OPT(i,j) is referring

to column i, row j of the matrix.

How to do semi-global alignment?
m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Start with the original global alignment matrix

How to do semi-global alignment?
m·sgap

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

change the base case — allow gaps before y

How to do semi-global alignment?

m·sgap O(n,m)

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

start traceback at max OPT(i,m) — this allows gaps after y; why?
0<i≤n

Semi-global alignment example

m·sgap O(n,m)

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

We allow this gap before y

and this gap after y

Semi-global Alignment

What is the same and different between the “global”
and semi-global (“fitting”) alignment problems?

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

Base case: OPT(i,0) = i x sgap Base case: OPT(i,0) = 0

Traceback starts at OPT(n,m) Traceback starts at max OPT(j,m)
0<j≤n

*assuming |y| < |x| and we are “fitting” y into x

Global Semi-global (“fitting”)

Semi-global Alignment

The recurrence remains the same, we only change
the base case of the recurrence and the origin of the
backtrack

Ignore gaps before x

Ignore gaps after x

Ignore gaps before y

Ignore gaps after y

change base case;
OPT(0,j) = 0

change traceback;
start from max OPT(n,j)

change base case;
OPT(i,0) = 0

change traceback;
start from max OPT(i,m)

1)

2)

3)

4)

0<j≤m

0<i≤n

Semi-global Alignment
Ignore gaps before x

Ignore gaps after x

Ignore gaps before y

Ignore gaps after y

1)
2)
3)
4)

x
y

x
y

use mods 3&4 use mods 1&4

y

use mods 2&3
xx

y

use mods 1&2

Types of semi-global alignments

Local Alignment

Local alignment between a and b: Best alignment between a
subsequence of a and a subsequence of b.

Motivation:
Many genes are
composed of
domains, which are
subsequences that
perform a particular
function.

a
b

*

Local Alignment

New meaning of entry of
matrix entry:

OPT(i, j) = best score
between:

some suffix of x[1...i]
some suffix of y[1...j]

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment between
a suffix of x[1..5] and a
suffix of y[1..5]

Same base-case
trick we used in semi-global alignment

*

Local Alignment
New meaning of entry of matrix
entry:

OPT(i, j) = best score between:
some suffix of x[1...i]
some suffix of y[1...j]

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment between
a suffix of x[1..5] and a
suffix of y[1..5]

Same base-case
trick we used in semi-global alignment

What else do we need to
change to allow local
alignments?

Hint: The empty alignment is
always a valid local alignment!

*

How do we fill in the local
alignment matrix?

(1), (2), and (3): same cases as before:
match x and y, gap in y, gap in x

New case: 0 allows you to say the
best alignment between a suffix of x
and a suffix of y is the empty
alignment.

Lets us “start over”
0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment between
a suffix of x[1..5] and a
suffix of y[1..5]

(1)

(2)

(3)
OPT(i, j) = max

8
>>>><

>>>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

0

*

Local Alignment

• Initialize first row and first column to be 0.

• The score of the best local alignment is the largest
value in the entire array.

• To find the actual local alignment:

• start at an entry with the maximum score
• traceback as usual
• stop when we reach an entry with a score of 0

*

Local Alignment in the DAG
framework

0,0

m,n

Local Alignment in the DAG
framework

0,0

m,n

Add 0 score edge
from the source
to every node

Local Alignment in the DAG
framework

0,0

m,n

Add 0 score edge
from the source
to every vertex

Add 0 score edge
from every vertex to

the target vertex

Local Alignment Example #1

local align(“AGCGTAG”, “CTCGTC”)
 * A G C G T A G
 * 0 0 0 0 0 0 0 0
 C 0 0 0 10 3 0 0 0
 T 0 0 0 3 5 13 6 0
 C 0 0 0 10 3 6 8 1
 G 0 0 10 3 20 13 6 18
 T 0 0 3 5 13 30 23 16
 C 0 0 0 13 6 23 25 18

Note: this table written top-to-bottom
instead of bottom-to-top

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*

Local Alignment Example #2

local align(“bestoftimes”, “soften”)
 * b e s t o f t i m e s
 * 0 0 0 0 0 0 0 0 0 0 0 0
 s 0 0 0 10 3 0 0 0 0 0 0 10
 o 0 0 0 3 5 13 6 0 0 0 0 3
 f 0 0 0 0 0 6 23 16 9 2 0 0
 t 0 0 0 0 10 3 16 33 26 19 12 5
 e 0 0 10 3 3 5 9 26 28 21 29 22
 n 0 0 3 5 0 0 2 19 21 23 22 24

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*

Note: this table written top-to-bottom
instead of bottom-to-top

More Local Alignment Examples

local align(“catdogfish”, “dog”)
 * c a t d o g f i s h
 * 0 0 0 0 0 0 0 0 0 0 0
 d 0 0 0 0 10 3 0 0 0 0 0
 o 0 0 0 0 3 20 13 6 0 0 0
 g 0 0 0 0 0 13 30 23 16 9 2

local align(“mississippi”, “issp”)
 * m i s s i s s i p p i
 * 0 0 0 0 0 0 0 0 0 0 0 0
 i 0 0 10 3 0 10 3 0 10 3 0 10
 s 0 0 3 20 13 6 20 13 6 5 0 3
 s 0 0 0 13 30 23 16 30 23 16 9 2
 p 0 0 0 6 23 25 18 23 25 33 26 19

local align(“aaaa”, “aa”)
 * a a a a
 * 0 0 0 0 0
 a 0 10 10 10 10
 a 0 10 20 20 20

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*

Local / Global Recap

• Alignment score sometimes called the “edit distance” between two
strings.

• Edit distance is sometimes called Levenshtein distance.

• Algorithm for local alignment is sometimes called “Smith-Waterman”

• Algorithm for global alignment is sometimes called “Needleman-
Wunsch”

• Same basic algorithm, however.

• Underlies BLAST

*

General Gap Penalties

• Currently, the score of a run of k gaps is sgap × k

• It might be more realistic to support general gap penalty, so
that the score of a run of k gaps is |gscore(k)| < |(sgap × k)|.

• Then, the optimization will prefer to group gaps together.

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT” into the first string could change
it into the second — Biologically, this is much more likely as x
could be transformed into y in “one fell swoop”.

*

General Gap Penalties — The
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

Previous DP no longer works with general gap penalties.

Why?

*

General Gap Penalties — The
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

The score of the last character depends on details of the
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

We need to “know” how long a final run of gaps is in order
to give a score to the last subproblem.

*

General Gap Penalties — The
Problem

The score of the last character depends on details of the
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

*

Knowing the optimal alignment at the substring
ending here.

Doesn’t let us simply build the optimal alignment
ending here.

Three Matrices
We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i

*

The M Matrix
We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment
ends in a match/mismatch.

A
G

Any kind of alignment is allowed
before the match/mismatch.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

*

G---
ACGT

The X (and Y) matrices

i
-
G

j-k j

k
x

y

G---
-CGT

i
-
G

j-k j

k
x

y

GCGT

i
-
G

j-k j

k
x

y

This case is automatically
handled.

k decides how long to make
the gap.

We have to make the whole
gap at once in order to
know how to score it.

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

*

Running Time for Gap Penalties

Runtime:

• Assume |X| = |Y| = n for simplicity: 3n2 subproblems

• 2n2 subproblems take O(n) time to solve (because we have to try all k)

⇒ O(n3) total time

Final score is max {M(n,m), X(n,m), Y(n,m)}.

How do you do the traceback?

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i

*

Affine Gap Penalties
• O(n3) for general gap penalties is usually too slow...

• We can still encourage spaces to group together using a special
case of general penalties called affine gap penalties:

gstart = the cost of starting a gap

gextend = the cost of extending a gap by one more space

gscore(k) = gstart + (k-1) x gextend

-g
sc

or
e(

k)

Affine gap penalty

gstart

(k-1)*gextend

1

-g
sc

or
e(

k)

Convex gap penalty

-g
sc

or
e(

k)

length of gap

General gap penalty

less restrictive ⇒ more restrictive

length of gap length of gap

Benefit of Affine Gap Penalties

• Same idea of using 3 matrices, but now we don’t need to search
over all gap lengths, we just have to know whether we are
starting a new gap or not.

*

Affine Gap as Finite State Machine

M

Y X

match(i,j)

gege

match(i,j)

gs+ge
gs+ge

match(i,j)

gs+ge

gs+ge

*

Affine Gap Penalties

gap in x

gap in y

(mis)match
between
x and y

If previous
alignment ends in
(mis)match, this
is a new gap

M(i, j) = score(xi, yi) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

8
>><

>>:

g

start

+M(i, j � 1)

g

extend

+X(i, j � 1)

g

start

+Y(i, j � 1)

Y(i, j) = max

8
>><

>>:

g

start

+M(i� 1, j)

g

start

+X(i� 1, j)

g

extend

+Y(i� 1, j)

If we’re using the
X matrix, then
we’re extending a
gap.

If we’re using the
Y matrix, then
we’re starting a
new gap in this
string.

*

Affine Base Cases (Global)

• M(0, i) = “score of best alignment between 0 characters of x and i
characters of y that ends in a match” = -∞ because no such alignment
can exist.

• X(0, i) = “score of best alignment between 0 characters of x and i
characters of y that ends in a gap in x” = gap_start + (i-1) × gap_extend
because this alignment looks like:

• X(i, 0) = “score of best alignment between i characters of x and 0
characters of y that ends in a gap in X” = -∞

• M(i, 0) = M(0, i) and Y(0, i) and Y(i, 0) are computed using the same logic
as X(i, 0) and X(0, i)

yyyyyyyyy

xxxxxxxxx-

← not allowed

*

Affine Gap Runtime

• 3mn subproblems

• Each one takes constant time

• Total runtime O(mn):

• back to the run time of the basic running time.

Traceback

• Arrows now can point between matrices.

• The possible arrows are given, as usual, by the recurrence.

• E.g. What arrows are possible leaving a cell in the M matrix?

*

Why do you “need” 3 functions?

• Alternative WRONG algorithm:

M(i,j) = max(

 M(i-1, j-1) + cost(xi, yj),

 M(i-1, j) +(gstart if Arrow(i-1, j) != , else gextend),

 M(j, i-1) + (gstart if Arrow(i, j-1) != , else gextend)

)

WRONG Intuition: we only need to know whether we are starting a gap or extending
a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we
can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends
in a match.

The best alignment
up to this cell ends

in a gap.
PROBLEM: The best alignment for strings
x[1..i] and y[1..j] doesn’t have to be used
in the best alignment between  
x[1..i+1] and y[1..j+1]

*

Why 3 Matrices: Example

CART
CA-T

match = 5, mismatch = -2, gap = -1, gap_start = -10

OPT(4, 3) = optimal score = 15 - 10 = 5

CARTS
CA-T-

WRONG(5, 3) = 15 - 10 - 10

CARTS
CAT--

OPT(5, 3) = 10 - 2 - 10 - 1

this is why we need to keep the X and Y matrices around.  
they tell us the score of ending with a gap in one of the sequences.

= -5

= -3

*

Side Note: Lower Bounds
• Suppose the lengths of x and y are n.

• Clearly, need at least Ω(n) time to find their global alignment  
(have to read the strings!)

• The DP algorithms show global alignment can be done in O(n2) time.

• A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n2 / log n) time.

• We probably won’t talk about the Four Russians Speedup.

• The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzev, 1970)

• Open questions: Can we do better? Can we prove that we can’t do
better? Very recent result — No#

*#: Backurs, Arturs, and Piotr Indyk. "Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless
SETH is false)." arXiv preprint arXiv:1412.0348 (2014).

Recap

• Local alignment: extra “0” case.

• General gap penalties require 3 matrices and O(n3) time.

• Affine gap penalties require 3 matrices, but only O(n2) time.

*

