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Maximization vs. Minimization

Edit distance:

Sequence Similarity: replace the min with a max — find the highest-scoring 
alignment.  Gap costs and bad matches usually get a negative “score”.

gap penalty → gap score (probably negative) 
match cost → match score

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

OPT(i, j) = min

8
>><

>>:

cost(xi, yj) + OPT(i� 1, j � 1)

cgap +OPT(i� 1, j)

cgap +OPT(i, j � 1)

match xi, yj

xi is unmatched
yj is unmatched

*



Alignment Categories
Global: Require an end-to-end alignment of x,y

Semi-global (glocal): Gaps at the beginning or end of x or y are 
free — useful when one string is significantly shorter than the other 
or for finding overlaps between strings

Local: Find the highest scoring alignment between x’ a substring 
of x and y’ a substring of y — useful for finding similar regions in  
strings that may not be globally similar
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Alignment Categories Motivation

Global: x and y are similar proteins from closely-related species

Semi-global (glocal): x and y are sequencing reads we are 
trying to assemble. We want to find reads where the right end (suffix) 
of one matches the left end (prefix) of another.
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Local: x and y are similar proteins from potentially distantly 
related species.  We don’t expect the entire protein to be 
conserved, but certain “domains” should be.

x
y

Alignment Categories Motivation

It’s possible and somewhat 
common for specific domains to  
be conserved, but not the entire 

protein sequence / structure.



Semi-global Alignment Example

Motivation:  
Useful for finding similarities that global 
alignments wouldn’t.  Also, can view “read 
mapping” as a variant of the semi-global 
alignment problem. Want to align entire read 
but it’s a tiny fraction of the genome. Note: 
won’t use semi-global alignment with the full 
genome for read mapping in practice.

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are 
free.  Useful when one one string is significantly shorter than the 
other or we want to find an overlap between the suffix of one string 
and a prefix of the other

x
y

sometimes  called “cost-free-ends” or “fitting” alignment

sometimes  called “overlap” alignment



Semi-global Alignment Example

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are 
free — one useful case is when one string is significantly shorter than 
the other

sometimes  called “cost-free-ends” or “fitting” alignment

We’ll discuss the “fitting” variant for in the next few 
slides for simplicity, but the same basic idea 
applies for the “overlap” variant as well.
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Recall: Global Alignment Matrix
OPT(i,j) contains the score for the best alignment between: 

the first i characters of string x  [prefix i of x] 

the first j character of string y [prefix j of y]

x

y

*

NOTE: observe the non-standard 
notation here; OPT(i,j) is referring 

to column i, row j of the matrix.



How to do semi-global alignment?
m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Start with the original global alignment matrix



How to do semi-global alignment?
m·sgap

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

change the base case — allow gaps before y



How to do semi-global alignment?

m·sgap O(n,m)

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

start traceback at max OPT(i,m) — this allows gaps after y; why?
0<i≤n



Semi-global alignment example

m·sgap O(n,m)

3·sgap

2·sgap

1·sgap

0 0 0 0 0

x

y

We allow this gap before y

and this gap after y



Semi-global Alignment

What is the same and different between the “global” 
and semi-global (“fitting”) alignment problems?

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

OPT(i, j) = max

8
>><

>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

Base case: OPT(i,0) = i x sgap Base case: OPT(i,0) = 0

Traceback starts at OPT(n,m) Traceback starts at max OPT(j,m)
0<j≤n

*assuming |y| < |x| and we are “fitting” y into x

Global Semi-global (“fitting”)



Semi-global Alignment

The recurrence remains the same, we only change  
the base case of the recurrence and the origin of the 
backtrack

Ignore gaps before x

Ignore gaps after x

Ignore gaps before y

Ignore gaps after y

change base case;  
OPT(0,j) = 0

change traceback;  
start from max OPT(n,j)

change base case;  
OPT(i,0) = 0

change traceback;  
start from max OPT(i,m)

1)

2)

3)

4)

0<j≤m

0<i≤n



Semi-global Alignment
Ignore gaps before x

Ignore gaps after x

Ignore gaps before y

Ignore gaps after y

1)
2)
3)
4)

x
y

x
y

use mods 3&4 use mods 1&4

y

use mods 2&3
xx

y

use mods 1&2

Types of semi-global alignments



Local Alignment

Local alignment between a and b: Best alignment between a 
subsequence of a and a subsequence of b. 

Motivation:  
Many genes are 
composed of 
domains, which are 
subsequences that 
perform a particular 
function. 

a
b

*



Local Alignment

New meaning of entry of 
matrix entry: 

OPT(i, j) = best score 
between: 

some suffix of  x[1...i] 
some suffix of y[1...j]
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Best alignment between 
a suffix of x[1..5] and a 
suffix of y[1..5]

Same base-case 
trick we used in semi-global alignment
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Local Alignment
New meaning of entry of matrix 
entry: 

OPT(i, j) = best score between: 
some suffix of  x[1...i] 
some suffix of y[1...j]
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Best alignment between 
a suffix of x[1..5] and a 
suffix of y[1..5]

Same base-case 
trick we used in semi-global alignment

What else do we need to 
change to allow local 
alignments?

Hint: The empty alignment is 
always a valid local alignment!
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How do we fill in the local  
alignment matrix?

(1), (2), and (3): same cases as before: 
match x and y, gap in y, gap in x 

New case: 0 allows you to say the 
best alignment between a suffix of x 
and a suffix of y is the empty 
alignment.

Lets us “start over”
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Best alignment between 
a suffix of x[1..5] and a 
suffix of y[1..5]

(1)

(2)

(3)
OPT(i, j) = max

8
>>>><

>>>>:

score(xi, yj) + OPT(i� 1, j � 1)

sgap +OPT(i� 1, j)

sgap +OPT(i, j � 1)

0
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Local Alignment

• Initialize first row and first column to be 0. 

• The score of the best local alignment is the largest 
value in the entire array. 

• To find the actual local alignment: 

• start at an entry with the maximum score 
• traceback as usual 
• stop when we reach an entry with a score of 0

*



Local Alignment in the DAG 
framework

0,0

m,n



Local Alignment in the DAG 
framework

0,0

m,n

Add 0 score edge 
from the source 
to every node



Local Alignment in the DAG 
framework

0,0

m,n

Add 0 score edge 
from the source 
to every vertex

Add 0 score edge 
from every vertex to 

the target vertex



Local Alignment Example #1

local align(“AGCGTAG”, “CTCGTC”)
      *   A   G   C   G   T   A   G
  *   0   0   0   0   0   0   0   0
  C   0   0   0  10   3   0   0   0
  T   0   0   0   3   5  13   6   0
  C   0   0   0  10   3   6   8   1
  G   0   0  10   3  20  13   6  18
  T   0   0   3   5  13  30  23  16
  C   0   0   0  13   6  23  25  18

Note: this table written top-to-bottom 
instead of bottom-to-top

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*



Local Alignment Example #2

local align(“bestoftimes”, “soften”)
      *   b   e   s   t   o   f   t   i   m   e   s
  *   0   0   0   0   0   0   0   0   0   0   0   0
  s   0   0   0  10   3   0   0   0   0   0   0  10
  o   0   0   0   3   5  13   6   0   0   0   0   3
  f   0   0   0   0   0   6  23  16   9   2   0   0
  t   0   0   0   0  10   3  16  33  26  19  12   5
  e   0   0  10   3   3   5   9  26  28  21  29  22
  n   0   0   3   5   0   0   2  19  21  23  22  24

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*

Note: this table written top-to-bottom 
instead of bottom-to-top



More Local Alignment Examples

local align(“catdogfish”, “dog”)
      *   c   a   t   d   o   g   f   i   s   h
  *   0   0   0   0   0   0   0   0   0   0   0
  d   0   0   0   0  10   3   0   0   0   0   0
  o   0   0   0   0   3  20  13   6   0   0   0
  g   0   0   0   0   0  13  30  23  16   9   2

local align(“mississippi”, “issp”)
      *   m   i   s   s   i   s   s   i   p   p   i
  *   0   0   0   0   0   0   0   0   0   0   0   0
  i   0   0  10   3   0  10   3   0  10   3   0  10
  s   0   0   3  20  13   6  20  13   6   5   0   3
  s   0   0   0  13  30  23  16  30  23  16   9   2
  p   0   0   0   6  23  25  18  23  25  33  26  19

local align(“aaaa”, “aa”)
      *   a   a   a   a
  *   0   0   0   0   0
  a   0  10  10  10  10
  a   0  10  20  20  20

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

*



Local / Global Recap

• Alignment score sometimes called the “edit distance” between two 
strings. 

• Edit distance is sometimes called Levenshtein distance. 

• Algorithm for local alignment is sometimes called “Smith-Waterman” 

• Algorithm for global alignment is sometimes called “Needleman-
Wunsch” 

• Same basic algorithm, however. 

• Underlies BLAST

*



General Gap Penalties

• Currently, the score of a run of k gaps is sgap × k 

• It might be more realistic to support general gap penalty, so 
that the score of a run of k gaps is |gscore(k)| < |(sgap × k)|. 

• Then, the optimization will prefer to group gaps together.

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

These have the same score, but the second one is often more 
plausible.

A single insertion of “GAAT” into the first string could change 
it into the second — Biologically, this is much more likely as x 
could be transformed into y in “one fell swoop”.

*



General Gap Penalties — The 
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

Previous DP no longer works with general gap penalties. 

Why?

*



General Gap Penalties — The 
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

The score of the last character depends on details of the 
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

We need to “know” how long a final run of gaps is in order 
to give a score to the last subproblem.

*



General Gap Penalties — The 
Problem

The score of the last character depends on details of the 
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

*

Knowing the optimal alignment at the substring 
ending here.

Doesn’t let us simply build the optimal alignment 
ending here.



Three Matrices
We now keep 3 different matrices:  

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch. 

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X. 

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i

*



The M Matrix
We now keep 3 different matrices:  

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch. 

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X. 

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment 
ends in a match/mismatch.

A
G

Any kind of alignment is allowed 
before the match/mismatch.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

*



G---
ACGT

The X (and Y) matrices

i
-
G

j-k j

k
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G---
-CGT

i
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j-k j

k
x

y
----
GCGT

i
-
G

j-k j

k
x

y

This case is automatically 
handled.

k decides how long to make 
the gap.  

We have to make the whole 
gap at once in order to 
know how to score it. 

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

*



Running Time for Gap Penalties

Runtime: 

• Assume |X| = |Y| = n for simplicity: 3n2 subproblems 

• 2n2 subproblems take O(n) time to solve (because we have to try all k) 

⇒ O(n3) total time

Final score is max {M(n,m), X(n,m), Y(n,m)}.  

How do you do the traceback?

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i

*



Affine Gap Penalties
• O(n3) for general gap penalties is usually too slow...  

• We can still encourage spaces to group together using a special 
case of general penalties called affine gap penalties: 

gstart = the cost of starting a gap 

gextend = the cost of extending a gap by one more space 

gscore(k) = gstart + (k-1) x gextend 

-g
sc

or
e(

k)

Affine gap penalty

gstart

(k-1)*gextend

1

-g
sc

or
e(

k)

Convex gap penalty

-g
sc

or
e(

k)

length of gap

General gap penalty

less restrictive ⇒ more restrictive

length of gap length of gap



Benefit of Affine Gap Penalties

• Same idea of using 3 matrices, but now we don’t need to search 
over all gap lengths, we just have to know whether we are 
starting a new gap or not.

*



Affine Gap as Finite State Machine

M

Y X

match(i,j)

gege

match(i,j)

gs+ge
gs+ge

match(i,j)

gs+ge

gs+ge

*



Affine Gap Penalties

gap in x

gap in y

(mis)match 
between
x and y

If previous 
alignment ends in 
(mis)match, this 
is a new gap

M(i, j) = score(xi, yi) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

8
>><

>>:

g

start

+M(i, j � 1)

g

extend

+X(i, j � 1)

g

start

+Y(i, j � 1)

Y(i, j) = max

8
>><

>>:

g

start

+M(i� 1, j)

g

start

+X(i� 1, j)

g

extend

+Y(i� 1, j)

If we’re using the 
X matrix, then 
we’re extending a 
gap.

If we’re using the 
Y matrix, then 
we’re starting a 
new gap in this 
string.

*



Affine Base Cases (Global)

• M(0, i) = “score of best alignment between 0 characters of x and i 
characters of y that ends in a match” = -∞ because no such alignment 
can exist.

• X(0, i) = “score of best alignment between 0 characters of x and i 
characters of y that ends in a gap in x” = gap_start + (i-1) × gap_extend 
because this alignment looks like: 

• X(i, 0) = “score of best alignment between i characters of x and 0 
characters of y that ends in a gap in X” = -∞

• M(i, 0) = M(0, i) and Y(0, i) and Y(i, 0) are computed using the same logic 
as X(i, 0) and X(0, i)

---------
yyyyyyyyy

xxxxxxxxx-
----------

← not allowed

*



Affine Gap Runtime

• 3mn subproblems

• Each one takes constant time

• Total runtime O(mn):

• back to the run time of the basic running time.

Traceback

• Arrows now can point between matrices.

• The possible arrows are given, as usual, by the recurrence.

• E.g. What arrows are possible leaving a cell in the M matrix?

*



Why do you “need” 3 functions?

• Alternative WRONG algorithm:

M(i,j) = max(

   M(i-1, j-1) + cost(xi, yj),

   M(i-1, j) +(gstart if Arrow(i-1, j) !=    , else gextend),

   M(j, i-1) + (gstart if Arrow(i, j-1) !=   , else gextend)

)

WRONG Intuition: we only need to know whether we are starting a gap or extending 
a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we 
can use them to decide if we are starting a new gap.

The best alignment 
up to this cell ends 
in a match.

The best alignment 
up to this cell ends 

in a gap.
PROBLEM: The best alignment for strings 
x[1..i] and y[1..j] doesn’t have to be used 
in the best alignment between  
x[1..i+1] and y[1..j+1]

*



Why 3 Matrices: Example

CART
CA-T

match = 5, mismatch = -2, gap = -1, gap_start = -10

OPT(4, 3) = optimal score = 15 - 10 = 5

CARTS
CA-T-

WRONG(5, 3) = 15 - 10 - 10

CARTS
CAT--

OPT(5, 3) = 10 - 2 - 10 - 1 

this is why we need to keep the X and Y matrices around.  
they tell us the score of ending with a gap in one of the sequences.

= -5

= -3

*



Side Note: Lower Bounds
• Suppose the lengths of x and y are n.

• Clearly, need at least Ω(n) time to find their global alignment  
(have to read the strings!)

• The DP algorithms show global alignment can be done in O(n2) time.

• A trick called the “Four Russians Speedup” can make a similar dynamic 
programming algorithm run in O(n2 / log n) time. 

• We probably won’t talk about the Four Russians Speedup.

• The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzev, 1970)

• Open questions: Can we do better? Can we prove that we can’t do 
better? Very recent result —  No#

*#: Backurs, Arturs, and Piotr Indyk. "Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless 
SETH is false)." arXiv preprint arXiv:1412.0348 (2014).



Recap

• Local alignment: extra “0” case.

• General gap penalties require 3 matrices and O(n3) time.

• Affine gap penalties require 3 matrices, but only O(n2) time. 

*


