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Course Info
Instructor: Rob Patro (rob.patro@cs.stonybrook.edu)

Office: 259 New Computer Science

Office Hours: Tues 1:00 — 3:00 and by appointment 

Website: www3.cs.stonybrook.edu/~cse549/

Academic Integrity: http://www.stonybrook.edu/commcms/academic_integrity/

TA: Fatemeh Almodaresi (almodaresit@cs.stonybrook.edu)

DSS: http://studentaffairs.stonybrook.edu/dss/

Office Hours: Thurs 1:00 — 3:00 (TBD)

Project Rosalind Course Page: http://rosalind.info/classes/437/

Project Rosalind Enrollment Link: http://rosalind.info/classes/enroll/35f3c3e77f/

Don’t use my @stonybrook.edu address;  
I’m unlikely to respond.
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Coursework & Grading



Academic Integrity
maintain it!



Textbooks
Required

• Bioinformatics Algorithms: An Active Learning Approach Volume I 
(Compeau and Pevzner 2015) 

• Bioinformatics Algorithms: An Active Learning Approach Volume II 
(Compeau and Pevzner 2015) 

Other great resources

• Biological Sequence Analysis (Durbin, Eddy, Krogh, Mitchinson 1998) 
• Genome Scale Algorithm Design (Mäkinen, Belazzougui, Cunial, 

Tomescu 2015) 
• Molecular Biology of the Cell, by Bruce Alberts* (Alberts et al. 2002) 
• Molecular Biology(Clark and Pazdernik 2012)

* free



Textbooks
CS

Algorithms* (Dasgupta, Papadimitriou, and Vazirani 2006) 

Algorithm Design (Kleinberg and Tardos 2006) 

The Algorithm Design Manual (Skiena 2008).

* free



Bioinformatics & Computational Biology

Algorithms & Data Structures 
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Why Computational Biology?
Our capabilities for high-throughput measurement 
of Biological data has been transformative

Sequencing the first human genome took ~10 
years and cost ~$2.7 billion 

Today, sequencing a genome costs ~$1,000✢ and 
a  “run” takes <3 days✢

✢ on an Illumina HiSeq X Ten — the machine costs ~$10M and sample prep 
takes a little extra time.

1990 - 2000

2014

~18 Tb per “run” at maximum capacity



Tons of Data, but we need Knowledge
We’ll discuss a bit about how sequencing works 
soon.  But the hallmark limitations are:

• Short “reads” (75 — 250) characters when the 
texts we’re interested in are 1,000s to 1,000,000s 
of characters long. 

• Imperfect “reads” — results in infrequent but 
considerable “errors”; modifying, inserting or 
deleting one or more characters in the “read”

• Biased “reads” — as a result of the underlying 
chemistry & physics, sampling is not perfectly 
uniform and random. Biases are not always 
known.



despite these limitations, scientists have taken a 
very subtle and nuanced approach . . . 

data from: http://www.ncbi.nlm.nih.gov/Traces/sra/

Growth of the Sequence Read Archive (SRA) 

http://www.ncbi.nlm.nih.gov/Traces/sra/


As a result, scientists have taken a very subtle and 
nuanced approach . . . 

data from: http://www.ncbi.nlm.nih.gov/Traces/sra/

Growth of the Sequence Read Archive (SRA) 

http://www.ncbi.nlm.nih.gov/Traces/sra/


Growth becomes its own problem

Stephens, Zachary D., et al. "Big Data: Astronomical or Genomical?." PLoS Biol 13.7 (2015): e1002195.



Answer questions “in the large”

How related are two species if we look at their whole 
genomes? (phylogenetics / phylogenomics)

Which genes are expressed in healthy vs. diseased tissue? 
(transcriptomics)

How do environment changes affect the microbial ecosystem 
of the Long Island sound? (metagenomics)

What is the genome of the beaver (state animal of NY)? 
(genomics)

How do genome changes lead to changes & diversity in a 
population? (population genetics/genomics)



The Computational Part
Answering questions on such a scale becomes a 
fundamentally computational endeavor:

Alignment — Find an approximate match for 50M short string in 
a 5GB corpus of text (string processing, data structure & 
algorithm design)  

Expression / Abundance Estimation — Find the most probable 
mixture of genes / microbes that explain the results of a 
sequencing experiment (statistics & ML)  

Assembly — Find a likely “super string” that parsimoniously explains  
200M short sub-strings (string processing, graph theory)

Phylogenomics — Given a set of related gene sequences, and an 
assumed model of sequence evolution, determine how these 
sequences are related to each other (statistics & ML)  



SB is a great place for Comp Bio

Location, Location, Location:  
~20 min from Brookhaven 

~40 min from CSHL 
~1.5 hours from NY Genome Center



This course
Broad survey of some main areas of computational biology:

Genomics

Genome assembly

Gene finding (HMMs)

Transcriptomics (RNA-seq)

Search: 
Homology detection 
Read mapping 
BWT, suffix arrays etc.

Motif finding (Gibbs sampling, 
statistical inference)

Phylogenetics
Character inference
Tree building

Current Topics
Network analysis / alignment

Genome folding & structure 
({3,4,5Hi}-C)

Metagenomics

kmer-ology



CS Topics
Many techniques broadly applicable in CS:

Hidden Markov Models

Dynamic Programming

Statistical Inference (frequentist & Bayesian)

String search & indexing (full-text indices):
Suffix trees / arrays
Burrows-Wheeler transform & FM-Index 

Discrete Optimization & Network Analysis



Next ~2 Lectures

Biology for Computer Scientists

Some fundamentals about molecular Biology

How Biology and CS differ as fields

Basics of sequencing techniques and experiments

Computer Science for Biologists

Some fundamentals notions about Computer Science
How CS differs from Biology



“Scientific” differences
Biology deals with very complex natural systems that 
arise through evolution 

Biological systems can be indirect, redundant and 
counterintuitive

Nothing is “always” true/false — Biological laws are not 
like Physical or Mathematical laws; more stochastic truths 
or rules of thumb.

Biological laws are a result of Physical laws, but treating 
them that way is computationally infeasible

Try to understand mechanisms by probing and measuring  
complex systems and obtaining (often noisy) measurements

Experiments often very expensive



“Scientific” differences
Computer Science deals with less complex (won’t 
say simple) systems that arise through design 

CS is more about invention than discovery (philosophy 
aside)

Things are always formally true or false in CS & detailed 
theoretical analysis allows precise description

Computational outcomes are a result of mathematical 
laws & effective algorithms often have an intuitive 
explanation

Some subfields of CS (e.g. network measurement) do bear 
a resemblance to the natural sciences — many are much  
closer to math.

Experiments often dirt cheap and easy to re-run



Immense Spatial & Time Scales
The scale, in both space and time, of the Biological 
systems we’re interested in studying are truly expansive.

Protein folding can happen on the order of microseconds
Evolution works over the span of hundreds, thousands and 
tens of thousands of years

A cell nucleus is measured in micrometers
Population migrations happen over tens of thousands of miles

Computational Biology encompasses the study of all of 
these problems. 

Time:

Space:



RNA Polymerase 
(transcription)

Ribosomes  
(translation)

DNA

RNA

ProteinForm networks & 
pathways; perform a 

vast set of cellular 
functions

“Flow” of information in the cell
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DNA (the genome)

en.wikipedia.org : CC BY-SA 3.0 

5’

3’

3’

5’

phosphate group hydroxyl group

http://en.wikipedia.org


DNA (the genome)

en.wikipedia.org : CC BY-SA 3.0 

G-C pairing generally 
stronger than A-T pairing 

Ratio of G+C bases — 
the “GC content” — is an 

important sequence feature 

http://en.wikipedia.org


DNA (the genome)

… …

“non-coding DNA” — may or may not produce 
transcripts (e.g. functional non-coding RNA)

gene — will go on to become a protein

In humans, most DNA is “non-coding” ~98%

In typical bacterial genome, only small fraction —  
~2% — of DNA is “non-coding”

Sometimes referred to as “junk” DNA — much is not, in any way, “junk”



DNA (the genome)

exons — appear in the mature RNA 
transcript

introns — “spliced” out of mature 
RNA

In eukaryotes, genes can have complex structure 

In prokaryotes, genes are typically contiguous DNA segment



RNA Polymerase 
(transcription)

Ribosomes  
(translation)

DNA

RNA

ProteinForm networks & 
pathways; perform a 

vast set of cellular 
functions

“Flow” of information in the cell

See video on course website
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RNA

http://tigger.uic.edu/classes/phys/phys461/phys450/ANJUM04/RNA_sstrand.jpg

Less regular structure  
than DNA

Generally a single-stranded 
molecule

Act as transcripts for protein, 
but also perform important 
functions themselves

Same “alphabet” as DNA, 
except thymine replaced by 
uracil 

Secondary & tertiary 
structure can affect function

http://tigger.uic.edu/classes/phys/phys461/phys450/ANJUM04/RNA_sstrand.jpg


RNA Splicing

en.wikipedia.org

DNA transcribed into pre-mRNA

Introns removed from pre-mRNA

Introns removed resulting in  
mature mRNA

Some “processing occurs” 
capping & polyadenylation

http://en.wikipedia.org


• Expression of genes can be 
measured via RNA-seq 
(sequencing transcripts) 

• Sequencing gives you short 
(35-300bp length reads)

(A) True Alternative Splicing (B) Alternative Transcript Start Sites (C) Alternative 3' termini

Alt. donor

Alt. Acceptor

Exon inclusion
 vs. skipping 

Intron 
retention

Alt. Cassette 
Exon

Staggered TSS

Alt. first exons

Initiation within intron

Staggered 
poly-A

Alternative 
last exons

Poly-A within 
an intron 

Figure 5 – (Redrawn from [4, 47]) Transcript structures illustrating 11 distinct types of alternatively included regions
(AIRs) within the genes. (A) Most patterns of alternative splicing lead to distinct RNAs that are distinguished by an
indel. These include alternative donors, alternative acceptors, alternatively included exons, and intron retention. A
fifth pattern of alternative splicing (mutually exclusive cassette exons) leads to two isoforms that differ by a substitution
rather than an indel. (B) 3 classes of alternative transcription start sites. The simplest is staggered transcription
start sites without a difference in splicing. A distinct class, extremely common in human genes, involves alternative
transcription start sites with distinct upstream exons (or sets of exons), which are spliced to a common downstream set
of exons. Finally, transcription initiation within an intron (not necessarily the first intron) can lead to two (or more)
transcripts, each of which has unique sequence. (C) 3 classes of alternative 3′ termini. The simplest is staggered
polyadenylation sites. Alternative terminal exons and 3′ end formation within an intron (not necessarily the last
intron) lead to two (or more) transcripts, each of which has unique sequence.

(e.g. splice junctions, RNA edits). An advantages of our clustering approach is that we can apply many of
the outlier detection techniques that have been developed in the data mining community [17].

For example, k-mers that are far from a cluster center or that are in a low-density region of the space are
outlier candidates. The distance from the center can be defined as simple Euclidean distance or the more
sophisticated Mahalanobis distance [17] that accounts for cluster shape using a co-variance matrix. Dense
regions can be estimated either with a high-dimensional histogram or by looking at the relative distance to
nearest neighbors. See [17] for an extensive discussion of techniques of this sort for outlier detection.

We can also exploit some genomic features to prune k-mers. Well-behaved k-mers should co-cluster
with many of their genomic neighbors. Similarly, a k-mer should co-cluster with many of its “shifts” —
k-mers that overlap it in sequence. K-mers for which these facts are not true ought to be given less weight.

These various filtering strategies and their parameters can be tested as described in section 5.3.

Box E: Annotating cluster types

We want to identify which clusters correspond to AIRs (including novel splice junctions and editing sites or
polymorphisms), and CIRs. Figure 5 shows the great variety of alternative splicing events that can occur.
Many patterns of splicing lead to an indel that will create k-mers that will be co-expressed. Figure 6 gives
a small example of such a situation: the AIR Z induces a cluster z1 corresponding to the k-mers in or
overlapping Z and a cluster z0 corresponding to the excision of AIR Z.

Even in cases where one of two isoforms has no nucleotides that are not present in the other, there will
still be k-mers not found in that other isoform. For example, given the two hypothetical isoforms

1 AAGTGAACAGGTGAGAATTTTTAATCGTTCTAAC
2 AAGTGAACAGGTTCTAAC

and k = 7, isoform 1 differs by an insertion of GTGAGAATTTTTAATC. While isoform 2 has no nucleotides
that are not found in isoform 1, all k-mers spanning the junction are unique to isoform 2 (for k = 7, these are

9

2. Objectives

This is a proposal to develop a suite of computational tools based on the representation of raw RNA-seq data
by its component substrings (k-mers), and the evaluation of expression using curated sets of informative k-
mers. In particular, software and algorithms will be developed to support the following three tasks.

2.1 Analysis of expression at the RNA level for both known and novel genetic elements

Exon 8

AT5G461100, positions 2100-2250

control

high light

drought

salt

heat

cold

Figure 1 – 15-mer counts for the 8th exon of A.
thaliana gene AT5G461100 over 6 conditions
using RNA-seq data from Filichkin et al. [11].
The alternative splicing of the 2nd-half of the
8th exon is apparent.

We will develop computationally efficient methods using
counts of k-mers within RNA-seq data to assess expression
of gene features at a fine scale (see Figure 1). This formalism
allows simultaneous evaluation of overall expression and alter-
native RNA processing using methods that we anticipate to be
much faster than existing methods.

The methods we will develop are based on JELLY-
FISH [30], a tool for fast, memory-efficient counting of k-mers
in DNA sequences (including FASTQ files derived from RNA-
seq). A k-mer is a substring of length k; JELLYFISH can count
k-mers using an order of magnitude less memory and an order
of magnitude faster than other k-mer counting packages by us-
ing an efficient encoding of a hash table and by exploiting the
“compare-and-swap” CPU instruction to increase parallelism.

By focusing on k-mers, we will replace the gene or the
exon with the included region (IR) as the basic unit of anal-
ysis. Constitutively included regions (CIRs) are those re-
gions found within all RNAs derived from a gene while al-
ternatively included regions (AIR) include conditionally ex-
pressed exons, alternative start sites, splice junctions, RNA-edited sites, etc. — any region of the transcrip-
tome that is present in a transcript sometimes but not others.

2.2 The de novo assembly of transcripts using co-expression data

RNA-seq data allows the de novo assembly of novel transcripts, but this task currently requires high-
performance computing many hours to perform, and accuracy is still lacking. Clustering k-mers allows
reads containing k-mers with similar expression profiles to be assembled first. The development and appli-
cation of methods for clustering many millions of k-mers based on their expression patterns is a central
objective of this proposal. We anticipate that great advantage will be gained by cluster-mediated assembly.
The cluster-based assembly has potential application in other areas, as well, particularly metagenomic DNA
sequence data.

2.3 Creation of profiles for genes and co-regulated alternatively included segments of genes

The development of methods for detection outlier k-mer expression vectors is a central objective of this
proposal. An advantage of our proposed clustering approach is that many existing techniques for outlier
detection [17] can be used to flag k-mers that are not indicative of the known AIR or CIR in which they
are contained based. Such deviations can be due to genomic sequence differences (polymorphisms or mu-
tations), post-transcriptional RNA editing, splicing at previously unannotated sites, or repeated sequences.
These are generally of biological interest, and may reveal novel AIRs or CIRs.

1

Alternative Splicing & Isoform Expression

slide courtesy of Carl Kingsford
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Protein
Triplets of mRNA bases (codons) 
correspond to specific amino acids

This mapping is known as the “genetic 
code” — an almost law of molecular Biology

en.wikipedia.org : CC BY-SA 3.0

http://en.wikipedia.org


Protein
Perform vast majority of intra 
& extra cellular functions

Can range from a few amino 
acids to very large and 
complex molecules

Can bind with other proteins 
to form protein complexes

The shape or conformation of a protein is intimately tied to its 
function. Protein shape, therefore, is strongly conserved 
through evolution — even more so than sequence. A protein 
can undergo sequence mutations, but fold into the same or 
a similar shape and still perform the same function.
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Glycolysis Pathway

en.wikipedia.org : CC BY-SA 3.0

phosphoglucose isomeraseConverts glucose → pyruvate 
Generates ATP (“energy currency” of the cell)

this is an example, no need to memorize this Bio.

http://en.wikipedia.org


Some Interesting Facts

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/GenomeSizes.html

Organism Genome size # of genes

ɸX174 (E. coli virus) ~5kb 11

E. coli K-12 ~4.6Mb ~4,300

Fruit Fly ~122Mb ~17,000

Human ~3.3Gb ~21,000

Mouse ~2.8Gb ~23,000

P. abies (a spruce tree) ~19.6Gb ~28,000

No strong link between genome size & phenotypic complexity
Plants can have huge genomes (adapt to environment while 
stationary!)

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/GenomeSizes.html


Some Interesting Facts

en.wikipedia.org : public domain

You are mostly bacteria, fungi & arches
Non-human cells outnumber human 
cells ~10:1 in the human body

This population of organisms is called 
the microbiome 

http://en.wikipedia.org


Some Interesting Facts

http://figshare.com/articles/Sequenced_Genomes_by_Year/715898

. . . Out of 8.7 ± 1.3 Mil*

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.

Vast majority of species unsequenced & can not be 
cultivated in a lab (motivation for metagenomics)

http://figshare.com/articles/Sequenced_Genomes_by_Year/715898

