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We’ll motivate the next few lectures with the problem of 
“read alignment” — finding the occurrences of sequencing 
reads in a target genome.   

However, read alignment is an instance of the approximate 
pattern matching problem. 

Nonetheless, we’ll use the simpler problem of exact pattern 
matching, and generalize the solutions later.

Why Exact Matching?



Exact String Matching Problem

Today, we’ll talk about exact matching algorithms that are 
quadratic and linear.  Then we’ll start talking about 
much faster approaches, but they require pre-
processing the reference.



Where does “ATAC” occur?

Finding needles in a haystack



Finding needles in a haystack



The Language of Strings

A string s is a finite sequence of characters 

|s| denotes the length of the string  — the number 
of characters in the sequence. 

A string is defined over an alphabet, Σ 

ΣDNA = {A,T,C,G}
ΣRNA = {A,U,C,G}
ΣAminoAcid = {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}

+

The empty string  is denoted ϵ — |ϵ| = 0



The Language of Strings
Given two strings s,t over the same alphabet Σ, we denote
the concatenation as st — this is the sequence of s followed
by the sequence of t

+

String s is a substring of t if there exist two (potentially empty) 
strings u and v such that t = usv

String s is a prefix/suffix of t if t = su/us — if neither s nor u  
are ϵ, then s is a proper prefix/suffix of t

String s is a subsequence of t if the characters of s appear in 
order (but not necessarily consecutively) in t

vacation

cat cansubstring subsequence



Exact String Matching Problem

Given: A string T (called the text) and a string      
         P (called the pattern). 

Find: All occurrences of P in T. 

ATACATACCCATATACGAGGCATACATGGCGAGTGTGC

|T| > |P|
An occurrence of P in T is a substring of T equal to P

T =
P = CGAG

CGAG CGAG



Occurrences vs. Alignments

ATACATACCCATATACGAGGCATACATGGCGAGTGTGCT =
P = CGAG

CGAG CGAG

An alignment of P to T is a correspondence (not 
necessarily an occurrence) between a substring of T 
and P 

all occurrences are alignments but not all alignments are occurrences

CGAGCGAG
alignment 1 alignment 2 alignment 3 alignment 4

(occurrence 1) (occurrence 2)



A naive algorithm

What is the simplest algorithm you can think 
of to solve the exact string matching problem?

Seriously, I’m not going to change the slide until 
somebody suggests something really naive!



A naive algorithm
Naive algorithm 1: Consider all alignments of P to T, and 
report each alignment that is an occurrence.

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs



def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

A naive algorithm

Worst-case Runtime?



A naive algorithm

def naive(T, P):
    N = len(T)
    M = len(P)
    occs = []
    for i in xrange(N - M + 1):
        if P == T[i:i+M]:
            occs.append(i)
    return occs

O(N)

O(M) — note, 
a “stupid” implementation 
of this takes M time while a 
reasonable version quits at 
the first mismatching 
character

O(N) * O(M) = O(NM) time



A naive algorithm

Best scenario for naive:

T:  GAGAGGAGTTATATATGAATAGAGATAGAGACGAG

P:  CGAG

Because every alignment but the last disagrees 
on the very first character, the inner loop takes O(1) time, 

except for the single match which takes O(M) time 
O(N+M)



A naive algorithm

Worst scenario for naive:

T:  CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

P:  CCCCG

Because every alignment is a match for 
P, the inner loop requires M char. compares each time 

O(NM)



A naive algorithm

There’s a big gap between  
 The best case time for naive O(N+M) and  
 The worst case time for naive O(NM)

How can we improve the worst case time?

Can we devise a method that is O(N+M) even  
in the worst case?



Another algorithm
The key idea here will be exploiting redundancies (i.e. self-
similarities) in the pattern P.

Say, we have:

P = CGAGACGAGAT
T = CGAGACGAGAACGAGACGAGATCCCTCTAA

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

rather than shift P by 1 position, we can skip by a larger amount:

Next possible  
occ. could start 

here

But we know that 
occ. would match  

up until here



Knuth-Morris-Pratt Algorithm
Knuth, Donald E., James H. Morris, Jr, and Vaughan R. Pratt. "Fast pattern 

matching in strings." SIAM journal on computing 6.2 (1977): 323-350.

The Knuth-Morris-Pratt (KMP) algorithm provides an elegant  
approach to exploiting this intuition, allowing us to 

determine the optimal “skips”

Recall the following definitions:
String s is a prefix/suffix of t if t = su/us — if neither 
s nor u  are ϵ, then s is a proper prefix/suffix of t



Knuth-Morris-Pratt Algorithm
 Main idea: Build a partial match table, pm, that tells us, 

for each proper suffix of P[0:q], the length of the longest 
match between this suffix and a proper prefix of P[0:q].

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9 10

pm[q] 0 0 0 0 0 1 2 3 4 5 0

 In words, pm[q] is the number for which P[0:pm[q]] is the 
longest proper prefix of P that is also a proper suffix of P[0:q]



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

The algorithm progresses as follows, assuming that 
P[0:q-1] matches T[i-q, i-1]:

If P[q] = T[i], then if q < m we extend  
the length of the match, otherwise we've 
found a match and set q = pm[q-1]

Else P[q] ≠T[i], then if q = 0 we increment i, 
otherwise we shift the pattern by pm[q-1], 
and set q = pm[q-1]

pm:
P:



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA
i-q i-1

q-1

pm:
P:



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

i-q i

q

T[i=10] ≠ P[q=10], so we shift the pattern  
to the right by pm[9] = 5 and set q = pm[q-1]

pm:
P:



Knuth-Morris-Pratt Algorithm
CGAGACGAGAT
00000123450

IIIIIIIIIIX
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA
i-q i

q
T[i=10] ≠ P[q=10], so we shift the pattern  

to the right by pm[9] = 5, setting q = pm[q-1] = 5

I
CGAGACGAGAT

CGAGACGAGACCGAGACGAGATCCCTCTAA

Even though we shift by 5, we actually skip even more character 
comparisons because we begin comparing the shifted pattern at 

position q = 5

pm:
P:



def kmp(P,T):
    n = len(T)
    m = len(P)
    matches = []
    pi = partialMatchTable(P)
    q = 0
    i = 0
    while i < n:
        if P[q] == T[i]:
            q += 1
            i += 1
            if q == m:
                matches.append(i-q)
                q = pi[q-1]
        else:
            if q == 0:
                i += 1
            else:
                q = pi[q-1]
    return matches



Running Time

analysis following: http://www.cs.ubc.ca/~hoos/cpsc445/Handouts/kmp.pdf

Each pass through the outer loop either increments i 
or shifts the pattern to the right.

Both of these events can occur at most n times, and so, 
the loop, in total, can execute at most 2n = O(n) times.

Assuming pm is precomputed, each event takes 
O(1) time.

Computing pm takes O(m) time — we’ll see that next

KMP runs in O(n+m) time

http://www.cs.ubc.ca/~hoos/cpsc445/Handouts/kmp.pdf


def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

Computing the Partial Match Table

The key to the linearity of partialMatchTable() is 
that we always use pm[0:i] to compute pm[i+1]



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1

pm[q] 0 0

m = 11 k = 0 q = 1
m = 11 k = 0 q = 1loop start:

loop end:



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2

pm[q] 0 0 0

m = 11 k = 0 q = 2
loop start:
loop end:

m = 11 k = 0 q = 2



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3

pm[q] 0 0 0 0

m = 11 k = 0 q = 3
loop start:
loop end:

m = 11 k = 0 q = 3



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4

pm[q] 0 0 0 0 0

m = 11 k = 0 q = 4
loop start:
loop end:

m = 11 k = 0 q = 4



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5

pm[q] 0 0 0 0 0 1

m = 11 k = 1 q = 5
loop start:
loop end:

m = 11 k = 0 q = 5



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6

pm[q] 0 0 0 0 0 1 2

m = 11 k = 2 q = 6
loop start:
loop end:

m = 11 k = 1 q = 6



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7

pm[q] 0 0 0 0 0 1 2 3

m = 11 k = 3 q = 7
loop start:
loop end:

m = 11 k = 2 q = 7



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8

pm[q] 0 0 0 0 0 1 2 3 4

m = 11 k = 4 q = 8
loop start:
loop end:

m = 11 k = 3 q = 8



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9

pm[q] 0 0 0 0 0 1 2 3 4 5

m = 11 k = 5 q = 9
loop start:
loop end:

m = 11 k = 4 q = 9



def partialMatchTable(p):
    m = len(p)
    pm = [0] * m
    k = 0
    for q in range(1, m):
        while k > 0 and p[k] != p[q]:
            k = pm[k - 1]
        if p[k] == p[q]:
            k = k + 1
        pm[q] = k
    return pm

P C G A G A C G A G A T

q 0 1 2 3 4 5 6 7 8 9 10

pm[q] 0 0 0 0 0 1 2 3 4 5 0

m = 11 k = 0 q = 10

When this happens, 
k = pm[5-1] = 0, so 

the while loop executes 
once.

loop start:
loop end:

m = 11 k = 5 q = 10



Summary
Despite our ability to solve general pairwise 
alignment, exact matching is still important 

The naive algorithm for the problem takes O(MN) 
time

By exploiting structure in the pattern, we reduce 
the worst case runtime to O(M+N)

Knuth, Morris & Pratt are awesome!

Next time, we’ll see how to do even better by pre-
processing the text.


