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Substitution Matrices



How should we score alignments

So far, we’ve looked at “arbitrary” schemes for scoring 
mutations. How can we assign scores in a more 
meaningful way?

A C G T

A 5 -5 -3 -5

C -5 5 -5 -3

G -3 -5 5 -5

T -5 -3 -5 5

A C G T

A 4 -1 -1 -1

C -1 4 -1 -1

G -1 -1 4 -1

T -1 -1 -1 4

Are these scores better than these scores?



How should we score alignments

So far, we’ve looked at “arbitrary” schemes for scoring 
mutations. How can we assign scores in a more 
meaningful way?

A C G T

A 4 -1 -1 -1

C -1 4 -1 -1

G -1 -1 4 -1

T -1 -1 -1 4

Are these scores better than these scores?

A C G T

A 5 -5 -3 -5

C -5 5 -5 -3

G -3 -5 5 -5

T -5 -3 -5 5

One option — “learn” the substitution / mutation rates 
from real data



How should we score alignments

Main Idea: Assume we can obtain (through a potentially 
burdensome process) a collection of high quality, high 
confidence sequence alignments. 

We have a collection of sequences which, presumably, 
originated from the same ancestor — differences are 
mutations due to divergence.  

Learn the frequency of different mutations from these  
alignments, and use the frequencies to derive our 
scoring function.



BLOSUM62 matrix

Brick, Kevin, and Elisabetta Pizzi. "A novel series of compositionally biased substitution matrices for comparing 
Plasmodium proteins." BMC bioinformatics 9.1 (2008): 236.



Probabilities to Scores

Assuming we have a reasonable process by which to 
compute frequencies, how can we use this to obtain a 
score?



Probabilities to Scores
Assuming we have a reasonable process by which to 
compute frequencies, how can we use this to obtain a 
score?

score = log odds ratio = sAB / log

✓
observed

expected

◆

Hypothesis we wish to test; two 
amino acids are correlated because 
they are homologous.

Null hypothesis; two amino acids 
occur independently (and are 
uncorrelated and unrelated).

Eddy, Sean R. "Where did the BLOSUM62 alignment score matrix come from?." Nature biotechnology 22.8 (2004): 1035-1036.



Probabilities to Scores
score = log odds ratio = sAB / log

✓
observed

expected

◆

Eddy, Sean R. "Where did the BLOSUM62 alignment score matrix come from?." Nature biotechnology 22.8 (2004): 1035-1036.

1 2 3 4 5

-4

-2

2

4

score

ratio

Positive scores mean we find “conservative substitutions”

Negative scores mean we find “nonconservative substitutions”



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

Introduced by Henikoff & Henikoff  in 1992

1. Look for conserved (gapless, >=62% identical) 
regions in alignments. 

2. Count all pairs of amino acids in each column of 
the alignments. 

3. Use amino acid pair frequencies to derive “score” 
for a mutation/replacement

Start with the BLOCKS database (H&H ’91)



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

1. Look for conserved (gapless) regions in alignments.

Start with the BLOCKS database (H&H ’91)

BLOSUM r: the matrix built from blocks with no more than r% of 
similarity – e.g., BLOSUM62 is the matrix built using sequences 
with no less than 62% similarity.*

}} collection of related proteins

conserved “block” within these proteins

sequences too similar are “clustered” & represented by either a 
single sequence, or a weighted combination of the cluster members



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

2. Count all pairs of amino acids in each column of  
 the alignments.

Start with the BLOCKS database (H&H ’91)

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGIRQ
FPTAEAGGRS

c(i)AB =

8
<

:

�c(i)A
2

�
if A = B

c(i)A ⇥ c(i)B otherwise

c(i)A = num. of occurrences of A in column i

What is the intuition behind this expression?



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

2. Count all pairs of amino acids in each column of  
 the alignments.

Start with the BLOCKS database (H&H ’91)

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

c(i)GG =

✓
3

2

◆
= 3

c(i)GL = 3⇥ 2

Example:
In this column, there 
are 3 ways to pair G 
with G, 6 potential 
ways to pair G with L 
and 1 potential way to 
pair L with L.c(i)LL =

✓
2

2

◆
= 1



Computing Scores
3. Use amino acid pair frequencies to derive “score” for a 
 mutation/replacement

cAB =
X

i

c(i)AB

T =
X

A�B

cAB

qAB =
cAB

T

Total # of potential align. between A & B:

Total number of pairwise char. alignments:

Normalized frequency of aligning A & B:



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

qGL =
0 + 0 + 0 + 0 + 0 + 0 + 4 + 6 + 0 + 0

10 (5)(4)
2

=
10

100

In our example, we get
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 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

qGL =
0 + 0 + 0 + 0 + 0 + 0 + 4 + 6 + 0 + 0

10 (5)(4)
2
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10

100

In our example, we get

why does this denominator work?



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

qGL =
0 + 0 + 0 + 0 + 0 + 0 + 4 + 6 + 0 + 0

10 (5)(4)
2

=
10

100

In our example, we get

why does this denominator work?

cVP = 2*3 = 6
cPP = 3 choose 2 = 3
cVV = 2 choose 2 = 1

So cVP + cPP +cVV = 10 = 5 choose 2



BLOSUM matrix

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.

FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

qGL =
0 + 0 + 0 + 0 + 0 + 0 + 4 + 6 + 0 + 0

10 (5)(4)
2

=
10

100

In our example, we get

total column sum is always # rows choose 2



Computing Scores
3. Use amino acid pair frequencies to derive “score” for a 
 mutation/replacement

eAB =

(
(pA) (pB) = (pA)

2
if A = B

(pA) (pB) + (pB) (pA) = 2 (pA) (pB) otherwise

Probability of occurrence of amino acid A in any {A,B} pair:

Expected likelihood of each {A,B} pair, assuming independence:

pA = qAA +
X

A 6=B

qAB



Computing Scores

score = log odds ratio = sAB = Round

 ✓
1

�

◆
log2

✓
qAB

eAB

◆!

Scaling factor used to produce scores that can be rounded 
to integers; set to 0.5 in H&H ‘92.

score = log odds ratio = sAB / log

✓
observed

expected

◆
Recall the original idea (likelihood → scores)

 Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution Matrices from Protein Blocks". PNAS 89 (22): 10915–10919.



Scores are data-dependent

adopted from: http://www.bioinfo.rpi.edu/bystrc/courses/biol4540/lecture5.pdf

GG 
GA 
WG 
WA 
NG 
GA 
GA

GW 
GA 
GW 
GA 
GN 
GA 
GA

pG = 0.5

eGG = 0.25

qGG = 0.214

sGG = Round[(2)log2(0.214 / 0.25)]  
      = Round[(2)(-0.22)] = 0

pG = 0.5

eGG = 0.25

qGG = 0.5

sGG = Round[(2)log2(0.5 / 0.25)]  
      = Round[(2)(1)] = 2

distribution of amino acids across columns matters

http://www.bioinfo.rpi.edu/bystrc/courses/biol4540/lecture5.pdf


Scores are data-dependent

adopted from: http://www.bioinfo.rpi.edu/bystrc/courses/biol4540/lecture5.pdf

GG 
GA 
WG 
AW 
NG 
GA 
GA

GW 
GA 
GW 
GA 
GN 
GA 
AG

pG = 0.5

eGW = 0.143

qGW = 0.167

sGW = Round[(2)log2(0.167 / 0.143)]  
      = Round[(2)(0.224)] = 0

qGW = 0.048

sGW = Round[(2)log2(0.048 / 0.143)]  
      = Round[(2)(-1.575)] = -3

{G,W} observed a lot

pW = 0.143 pG = 0.5

eGW = 0.143

pW = 0.143

{G,W} observed rarely

http://www.bioinfo.rpi.edu/bystrc/courses/biol4540/lecture5.pdf


Example
FPTADAGGRS
FVTADALGRS
FPTPDAGLRN
FVTAEAGLRQ
FPTAEAGGRS

A D E F G L N P Q R S T V
A 16

D 3

E 6 1

F 10

G 9

L 10 1

N 0

P 4 3

Q 1 0

R 10

S 3 3 3

T 10

V 6 1

Matrix of cAB values

cAB =
X

i

c(i)AB



Example
A D E F G L N P Q R S T V

A 0.16

D 0.03

E 0.06 0.01

F 0.1

G 0.09

L 0.1 0.01

N 0

P 0.04 0.03

Q 0.01 0

R 0.1

S 0.03 0.03 0.03

T 0.1

V 0.06 0.01

Matrix of qAB values

cAB

qAB =
cAB

T

PA PD PE PF PG PL PN PP PQ PR PS PT PV

0.18 0.06 0.04 0.1 0.14 0.06 0.02 0.08 0.02 0.1 0.06 0.1 0.04

pA = qAA +
X

A 6=B

qAB

2pA = qAA +
X

A 6=B

qAB

2



Example
A D E F G L N P Q R S T V

A 0.0324

D 0.0216 0.0036

E 0.0144 0.0048 0.0016

F 0.0360 0.0120 0.0080 0.0100

G 0.0504 0.0168 0.0112 0.0280 0.0196

L 0.0216 0.0072 0.0048 0.0120 0.0168 0.0036

N 0.0072 0.0024 0.0016 0.0040 0.0056 0.0024 0.0004

P 0.0288 0.0096 0.0064 0.0160 0.0224 0.0096 0.0032 0.0064

Q 0.0072 0.0024 0.0016 0.0040 0.0056 0.0024 0.0008 0.0032 0.0004

R 0.0360 0.0120 0.0080 0.0200 0.0280 0.0120 0.0040 0.0160 0.0040 0.0100

S 0.0216 0.0072 0.0048 0.0120 0.0168 0.0072 0.0024 0.0096 0.0024 0.0120 0.0036

T 0.0360 0.0120 0.0080 0.0200 0.0280 0.0120 0.0040 0.0160 0.0040 0.0200 0.0120 0.0100

V 0.0144 0.0048 0.0032 0.0080 0.0112 0.0048 0.0016 0.0064 0.0016 0.0080 0.0048 0.0080 0.0016

Matrix of eAB values

pA

qAB
eAB =

(
(pA) (pB) = (pA)

2
if A = B

(pA) (pB) + (pB) (pA) = 2 (pA) (pB) otherwise



Example
Matrix of scores

A D E F G L N P Q R S T V
A 5

D 6

E 7 5

F 7

G 4

L 5 3

N
P 1 4

Q 7

R 7

S 7 7 6

T 7

V 6 5

Blank cells are “missing data” (i.e. no observed values); wouldn’t happen 
with sufficient training data.

eAB

sAB = Round

 
2 log2

✓
qAB

eAB

◆!

qAB



Dealing with sequence redundancy

(slide from Michael Gribskov)

E.g., for BLOSUM-80, group sequences that are >80% similar



Point Accepted Mutation Matrix
Introduced by Margaret Dayhoff in 1978

Observed mutation probabilities between amino 
acids over 71 families of closely related proteins 
(85% sequence identity within a family)

Based on a Markov mutation model; The PAM is a “unit of 
evolutionary mutation”. 1 PAM is the unit for which 1 mutation to 
occurs per 100 amino acids (this varies e.g. by species).  The PAM1 
matrix express the log odds ratio of the likelihood of a point accepted 
mutation from one amino acid to another to the likelihood that these 
amino acids were aligned by chance.

Picture from: http://en.wikipedia.org/wiki/Margaret_Oakley_Dayhoff#mediaviewer/File:Margaret_Oakley_Dayhoff_cropped.jpg

PAM matrix slides below courtesy of Didier Gonze
(http://homepages.ulb.ac.be/~dgonze/TEACHING/pam_blosum.pdf)

http://en.wikipedia.org/wiki/Margaret_Oakley_Dayhoff#mediaviewer/File:Margaret_Oakley_Dayhoff_cropped.jpg
http://homepages.ulb.ac.be/~dgonze/TEACHING/pam_blosum.pdf


The PAM matrices derived by Dayhoff (1978):

 are based on evolutionary distances.

 have been obtained from carefully aligned closely

related protein sequences (71 gapless alignments of

sequences having at least 85% similarity).

Reference: Dayhoff et al. (1978). A model of evolutionary change in proteins. In Atlas of

Protein Sequence and Structure, vol. 5, suppl. 3, 345–352. National Biomedical Research

Foundation, Silver Spring, MD, 1978.

  PAM scoring matrices

The substitution score is expected to depend

on the rate of divergence between sequences.

M. Dayhoff

accepted mutations



Reference: Dayhoff et al. (1978). A model of evolutionary change in proteins. In Atlas of

Protein Sequence and Structure, vol. 5, suppl. 3, 345–352. National Biomedical Research

Foundation, Silver Spring, MD, 1978.

  PAM scoring matrices

PAM = Percent (or Point) Accepted Mutation

The PAM matrices are series of scoring matrices, each reflecting a

certain level of divergence:

PAM = unit of evolution (1 PAM = 1 mutation/100 amino acid)

  PAM1 proteins with an evolutionary distance of 1% mutation/position

  PAM50 idem for 50% mutations/position

  PAM250 250% mutations/position (a position could mutate several times)



  Derivation of the PAM matrices

Reference: Borodovsky & Ekisheva (2007) Problems and Solutions in Biological

sequence analysis. Cambridge Univ Press.

To illustrate how the PAM substitution matrices have been derived, we

will consider the following artificial ungapped aligned sequences:

A C G H

D B G H

A D I J

C B I J



  Derivation of the PAM matrices

ABGH

ABGH ABIJ

ACGH DBGH ADIJ CBIJ

B-C A-D B-D A-C

H-J G-I

ABIJ

ABGH ABIJ

ACGH DBGH ADIJ CBIJ

B-C A-D B-D A-C

ABIH

ABGH ABIJ

ACGH DBGH ADIJ CBIJ

B-C A-D B-D A-C

H-J

ABGJ

ABGH ABIJ

ACGH DBGH ADIJ CBIJ

B-C A-D B-D A-C

J-H G-I

J-H !I-G

I-G

Phylogenetic trees (maximum parsimony)

Here are represented the four more parsimonious (minimum of substitutions)

phylogenetic trees for the alignment given above.



  Derivation of the PAM matrices

Matrix of accepted point mutation counts (A)

0400000J

0040000I

4000000H

0400000G

0000044D

0000044C

0000440B

0000440A

JIHGDCBA For each pair of different

amino acids (i,j), the total

number aij of substitutions

from i to j along the edges of

the phylogenetic tree is

calculated.

(they are indicated in blue on the

previous slide)



  Derivation of the PAM matrices

A B G H    A B G H    A B G H

A B G H    A B I J    A C G H

A B G H    A B I J    A B I J

D B G H    A D I J    C B I J

ABGH

ABGH ABIJ

ACGH DBGH ADIJ CBIJ

B-C A-D B-D A-C

H-J G-I

Each edge of a given tree is associated with the ungapped

alignment of the two sequences connected by this edge.

Thus, any tree shown above generates 6 alignments. For example

the first phylogenetic tree generates the following alignments:

Those alignments can be used to assess the "relative mutability"

of each amino acid.



  Derivation of the PAM matrices

Relative amino acid mutability values mj for our example

110.1670.1670.1670.1670.20.2Relative mutability mj

88242424244040Frequency of occurrence

88444488Changes (substitutions)

DCJGHIBAAmino acid

Relative mutability (mi)

The relative mutability is defined by the ratio of the total number of

times that amino acid j has changed in all the pair-wise alignments

(in our case 6x4=24 alignments) to the number of times that j has

occurred in these alignments, i.e.

! 

m j =
number of changes of j

number of occurrences of j

The relative mutability accounts for the fact that the different amino acids have different

mutation rates. This is thus the probability to mutate.

alns / tree
# of trees



  Derivation of the PAM matrices

Relative mutability of the 20 amino acids

65Arg120Ser

56Lys106Asp

56Pro102Glu

49Gly100Ala

41Tyr97Thr

41Phe96Ile

40Leu94Met

74

93

134

mi

18TrpVal

20CysGln

66HisAsn

miaaaa

Values according Dayhoff (1978)

The value for Ala has been arbitrarily

set at 100.

Trp and Cys are less mutable

Cys is known to have several unique, indispensable

function (attachment site of heme group in cytochrome and

of FeS clusters in ferredoxin). It also forms cross-links

such as in chymotrypsin or ribonuclease.

Big groups like Trp or Phe are less mutable due to their

particular chemistry. On the other extreme, the low

mutability of Cys must be due to its unique smallness that

is advatageous in many places.

Asn, Ser, Asp and Glu are most mutable

Although Ser sometimes functions in the active center, it

more often performs a function of lesser importance, easily

mimicked by several other amino acids of similar physical

and chemical properties.



  Derivation of the PAM matrices

The notion of effective frequency fi takes into account the difference in variability

of the primary structure conservation in proteins with different functional roles.

Two alignment blocks corresponding to 2 different families may contribute

differently to fi even if the number of occurrence of amino acid j in these blocks is

the same.

Effective frequency (fi)

! 

relative frequency of

exposure to mutation

" 

# 
$ 

% 

& 
'  =  

average composition

of each group

" 

# 
$ 

% 

& 
' (

number of mutations in

the corresponding tree

" 

# 
$ 

% 

& 
' 



  Derivation of the PAM matrices

! 

f j = k q j

(b )
N
(b )

b

"

0.1250.1250.1250.1250.1250.1250.1250.125Frequency f

DCJGHIBAAmino acid

where the sum is taken over all alignment blocks b

qj
(b) is the observed frequency of amino acid j in block b,

N(b) is the number of substitutions in a tree built for b

and the coefficient k is chosen the ensure that the sum of the frequences fj = 1.

In our example, there is only one block, therefore the effective frequencies

are equal to the compositional frequencies (fi = qj):

The effective frequency is defined as

Effective frequency (fi)



  Derivation of the PAM matrices

TrpMetTyrCysHisIleAmino acid

0.0100.0150.0300.0330.0340.037Frequency f

GlnPheAsnArgAspGluProAmino acid

0.0380.0400.0400.0410.0470.0500.051Frequency f

0.0580.0650.0700.0810.0850.0870.089Frequency f

ThrValSerLysLeuAlaGlyAmino acid

Effective frequency of the 20 amino acids determined

for the original alignment data (Dayhoff et al., 1978)

Distribution of amino acids found in 1081

peptides and proteins listed in the Atlas of

Protein Sequence and Structure (1981).

Doolittle RF (1981) Similar amino acid

sequences: chance or common ancestry?

Science. 214:149-59.

Source: Dayhoff, 1978



  Derivation of the PAM matrices

! 

Mij =
"m jAij

Akj

k

#

! 

M
ii

=1" #m
i

Mutational probability matrix (M)

Let's define Mij the probability of the amino acid in column j having been

substituted by an amino acid in row i over a given evolutionary time unit.

Non-diagonal elements of M: Diagonal elements of M:

In these equations, m is the relative mutability and A is the matrix of accepted point mutations.
The constant λ represents a degree of freedom that could be used to connect the matrix M

with an evolutionary time scale.

In our example:

A

A

B

C

D

0

4

4

see matrix A

this represents

8/40 of the cases

mutability m

this represents

32/40 of the cases

If A is mutated, the probability that

it is mutated into D is

ADA/(ABA+ACA+ADA) = 4/8

Thus the probability that A is

mutated into D is:

MDA = 4/8 * 8/40 = 4/40

and the probability that A is not

mutated is:

MAA = 1 - 8/40 = 32/40



  Derivation of the PAM matrices

! 

Mij =
"m jAij

Akj

k

#

! 

M
ii

=1" #m
i

Mutational probability matrix (M)

Let's define Mij the probability of the amino acid in column j having been

substituted by an amino acid in row i over a given evolutionary time unit.

Non-diagonal elements of M: Diagonal elements of M:

In these equations, m is the relative mutability and A is the matrix of accepted point mutations.
The constant λ represents a degree of freedom that could be used to connect the matrix M

with an evolutionary time scale.

The coefficient λ could be adjusted to ensure that a specific (small) number of substitutions would

occur on average per hundred residues. This adjustement was done by Dayhoff et al in the following

way. The expected number of amino acids that will remain inchanged in a protein sequence 100

amino acid long is given by:

If only one substitution per residue is allowed, then λ is calculated from the equation:

! 

100 f j (1" #m j ) = 99
j

$! 

100 f jM jj =100
j

" f j (1# $m j )
j

"

unchanged



  Derivation of the PAM matrices

! 

Mij =
"m jAij

Akj

k

#

! 

M
ii

=1" #m
i

Mutational probability matrix (M)

Let's define Mij the probability of the amino acid in column j having been

substituted by an amino acid in row i over a given evolutionary time unit.

Non-diagonal elements of M: Diagonal elements of M:

In these equations, m is the relative mutability and A is the matrix of accepted point mutations.
The constant λ represents a degree of freedom that could be used to connect the matrix M

with an evolutionary time scale.

The coefficient λ could be adjusted to ensure that a specific (small) number of substitutions would

occur on average per hundred residues. This adjustement was done by Dayhoff et al in the following

way. The expected number of amino acids that will remain inchanged in a protein sequence 100

amino acid long is given by:

If only one substitution per residue is allowed, then λ is calculated from the equation:

! 

100 f j (1" #m j ) = 99
j

$! 

100 f jM jj =100
j

" f j (1# $m j )
j

"

Average probability 
that amino acids 
will not mutate

For every 100 
amino acids

We want 99 of them to 
remain unchanged.



  Derivation of the PAM matrices

0.995700.004300000J

00.995700.00430000I

0.004300.995700000H

00.004300.99570000G

00000.974000.00260.0026D

000000.97400.00260.0026C

00000.01310.01310.99480B

00000.01310.013100.9948A

JIHGDCBA

Mutational probability matrix

Note that M is a non-symmetric matrix.

In our example, λ = 0.0261 and the mutation probability matrix (PAM1) is:



  Derivation of the PAM matrices

Mutational probability matrix derived by Dayhoff for the 20 amino acids

9901201023117111573322311213V

199452110210011401030301Y

01997601010000000000020W

920987132516821112231413222T

225389840173471221664117341128S

2004129926112215238112513P

028312099464068210000111F

40021019874485000200011M

1101183020992614227120625372K

152431313452994722411600313L

3310710712299872002121322I

1411132011099120120131881H

500321311210199357311112121G

21024301413249865350567010E

1002260463123127987605493Q

23015100001100099730011C

1003510030146536098594206D

141920210131321664036982214N

10816414191310001010199131R

182032352226246221178310929867A

VYWTSPFMKLIHGEQCDNRA

For clarity, the values have been multiplied by 10000

Source: Dayhoff, 1978
This matrix corresponds to an evolution time period giving 1

mutation/100 amino acids, and is refered to as the PAM1 matrix.



  Derivation of the PAM matrices

Mutational probability matrix derived by Dayhoff for the 20 amino acids

This matrix is the mutation

probability matrix for an evolution

time of 1 PAM.

The diagonal represents the

probability to still observe the same

residue after 1 PAM. Therefore the

diagonal represents the 99% of the

case of non-mutation.

Note that this does not mean that there

was no mutation during this time interval.

Indeed, the conservation of a residue

could reflect either a conservation during

the whole period, or a succession of two

or more mutations ending at the initial

residue

Source: J. van Helden



  Derivation of the PAM matrices

From PAM1 to PAM2

Source: J. van Helden

line 3 of PAM1 column 17 of PAM1

=> Matrix product: PAM2 = PAM1 x PAM1



  Derivation of the PAM matrices

From PAM1 to PAM2, PAM100, PAM250, etc...

Remark (from graph theory)

a b c d
0010d

1000c

0100b

0111a

dcba Matrix Q indicates the

number of paths going from

one node to another in 1

step

Matrix Q2 indicates the

number of paths going from

one node to another in 2

steps

Matrix Qn indicates the

number of paths going from

one node to another in n

steps

1110d

1010c

1000b

1211a

dcba

............d

............c

............b

............a

dcba

Source: J. van Helden



From PAM1 to PAM2, PAM100, PAM250, etc...

  Derivation of the PAM matrices

Similarly:

PAM1   gives the probability to observe the changes i → j per 100 mutations

PAM2 = PAM12   gives the probability to observe the changes i → j per 200 mutations

PAM100 = PAM1100   gives the probability to observe the changes i → j per 10 000 mutations

PAM250 = PAM1250   gives the probability to observe the changes i → j per 25 000 mutations

PAMn = PAM1n   gives the probability to observe the changes i → j per 100xn mutations.

Convergence: it can be verified that

PAM∞ = PAM1∞ converges to the observed frequencies:

! 

lim
n"#

M
n

=

fA fA ... fA

fR fR ... fR

... ... ...

fV fV ... fV

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

Dayhoff et al. (1978) checked this convergence by computing M2034.



  Derivation of the PAM matrices

PAM250 derived by Dayhoff for the 20 amino acids

VYWTSPFMKLIHGEQCDNRA

V

Y

W

T

S

P

F

M

K

L

I

H

G

E

Q

C

D

N

R

A

1747255510410154544444447

2313221152122311131211

015501010010100000020

632118635646465546658

644910935745697677869

421562023433554534557

3204221324165311111212

21111126232111101111

534886292445858102810186

1376645132043415534623446

931432562610222222223

232233223221524724552

7329118356455279741010512

3215541352365129111745

321334135327371016553

241232111122211521112

3215541352365107111845

33245423523646527644

227344149236235234173

9421111114776861298599613

For clarity, the values have been multiplied by 100

Source: Dayhoff, 1978

This matrix corresponds to an evolution time period giving 250

mutation/100 amino acids (i.e. an evolutionary distance of 250 PAM),

and is refered to as the PAM250 matrix.



  Derivation of the PAM matrices

Source: Dayhoff, 1978

Interpretation of the PAM250 matrix

In comparing 2 sequences at this evolutionary distance

(250 PAM), there is:

* * * * A * * * * *

 250 PAM

* * * * A * * * * *    probability of 13%

* * * * R * * * * *    probability of 3%

* * * * N * * * * *    probability of 4%

* * * * W * * * * *    probability of 0%

...



  Derivation of the PAM matrices

From probabilities to scores

! 

rn (i, j) =
M ji

n

f j
=
Pji,n

f i f j

Note that R (the odd-score or relatedness matrix) is a symmetric matrix.

So far, we have obtained a probability matrix, but we would like a scoring

matrix.

A score should reflect the significance of an alignment occurring as a result of

an evolutionary process with respect to what we could expect by chance.

A score should involve the ratio between the probability derived from non-

random (evolutionary) to random models:

Pji,n = fi Mji
n

  is the probability that two aligned amino acids have diverged

from a common ancestor n/2 PAM unit ago, assuming that the substitutions

follow a Markov process (for details, see Borodovsky & Ekisheva, 2007).

probability to see a pair (i,j) due to evolution

probability to see a pair (i,j) by chance

The matrix Mji
n

 is the mutational probability matrices at PAM distance n.

Matrices M1 and M250 have been shown before.



  Derivation of the PAM matrices

Log-odd scores

! 

sn (i, j) = log
M ji

n

f j
= log

Pji,n

f i f j

This definition has convenient practical consequences:

A positive score (sn > 0) characterizes the accepted mutations

A negative score (sn < 0) characterizes the unfavourable mutations

Another property of the log-odd scores is that they can be added to

produce the score of an alignment:

T  A  H  G  K

Y  S  D  G  D

Salignment = s(T,Y) + s(A,S) + s(H,D) + s(G,G) + s(K,D)

In practice, we often use the log-odd scores defined by



  Derivation of the PAM matrices

Cys C 12

Ser S 0 2

Thr T -2 1 3

Pro P -1 1 0 6

Ala A -2 1 1 1 2

Gly G -3 1 0 -1 1 5

Asn N -4 1 0 -1 0 0 2

Asp D -5 0 0 -1 0 1 2 4

Glu E -5 0 0 -1 0 0 1 3 4

Gln Q -5 -1 -1 0 0 -1 1 2 2 4

His H -3 -1 -1 0 -1 -2 2 1 1 3 6

Arg R -4 0 -1 0 -2 -3 0 -1 -1 1 2 6

Lys K -5 0 0 -1 -1 -2 1 0 0 1 0 3 5

Met M -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6

Ile I -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5

Leu L -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6

Val V -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4

Phe F -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9

Tyr Y 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10

Trp W -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17

C S T P A G N D E Q H R K M I L V F Y W

Cys Ser Thr Pro Ala Gly Asn Asp Glu Gln His Arg Lys Met Ile Leu Val Phe Tyr Trp

Hydrophobic C P A G M I L V

Aromatic H F Y W

Polar S T N Q Y

Basic H R K

Acidic D E

PAM250 matrix (log-odds)

Source: J. van Helden



  PAM matrices: exercise

The original PAM250 substitution matrix scores a substitution of Gly by Arg

by a negative score -3 (decimal logarithm and scaling factor 10 are used,

with rounding to the nearest neighbour). The average frequency of Arg in

the protein sequence database is 0.041. Use this information as well as the

method described above to estimate the probability that Gly will be

substituted by Arg after a PAM250 time period.

Source: Borodovsky & Ekisheva (2007)



  PAM matrices: exercise

The original PAM250 substitution matrix scores a substitution of Gly by Arg

by a negative score -3 (decimal logarithm and scaling factor 10 are used,

with rounding to the nearest neighbour). The average frequency of Arg in

the protein sequence database is 0.041. Use this information as well as the

method described above to estimate the probability that Gly will be

substituted by Arg after a PAM250 time period.

The element sij of the PAM250 substitution matrix and the frequency of

amino acid j (fj) in a protein sequence database are connected by the

following formula:

Therefore, the probability of substitution of Gly by Arg is:

! 

sij = 10log
P(i " j in 250 PAM)

f j

# 

$ 
% % 

& 

' 
( ( 

! 

P(Gly " Arg in 250 PAM) = 0.041#10
$0.3

= 0.0205

Source: Borodovsky & Ekisheva (2007)



  Derivation of the PAM matrices

Scoring an alignment

T  A  H  G  K

Y  S  D  G  D

Salignment  = s(T,Y) + s(A,S) + s(H,D) + s(G,G) + s(K,D)

= -3 + 1 + 1 + 5 + 0

= 4

A scoring matrix like PAM250 can be

used to score an alignment



  Choosing the appropriate PAM matrix

Correspondance between the observed percent of amino acid difference d

between the evolutionary distance n (in PAM) between them:

How to choose the appropriate PAM matrix?
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  Choosing the appropriate PAM matrix

Altschul SF(1991) Amino acid substitution matrices from an

information theoretic perspective. J Mol Biol. 219:555-65.

  PAM120 matrix is the most appropriate for database searches

  PAM200 matrix is the most appropriate for comparing two specific

proteins with suspected homology

Remark:

In the PAM matrices, the index indicates the percentage of

substitution per position.

Higher indexes are more appropriate for more distant proteins

(PAM250 better than PAM100 for distant proteins).

How to choose the appropriate PAM matrix?



Other Scoring Matrices
PAM vs. BLOSUM

from: http://en.wikipedia.org/wiki/BLOSUM, http://en.wikipedia.org/wiki/Point_accepted_mutation

http://en.wikipedia.org/wiki/BLOSUM
http://en.wikipedia.org/wiki/Point_accepted_mutation


Other Scoring Matrices
PAM vs. BLOSUM

from: http://en.wikipedia.org/wiki/BLOSUM

PAM BLOSUM

Based on global alignments of closely related 
proteins.

Based on local alignments of protein segments.

PAM1 is the matrix calculated from comparisons 
of sequences with no more than 1% divergent

BLOSUM 62 is calculated from comparisons of 
sequences no less than 62% identical

Other PAM matrices are extrapolated from PAM1
Other BLOSUM matrices are not extrapolated, but 

computed based on observed alignments at 
different identity percentage 

Larger numbers in name denote larger 
evolutionary distance

Larger numbers in name denote higher sequence 
similarity (& therefore smaller evolutionary 

distance)

Based on explicit, Markovian, model of evolution
Not based on any explicit model of evolution, but 

learned empirically from alignments

http://en.wikipedia.org/wiki/BLOSUM


What about gap penalties?

+Reese, J. T., and William R. Pearson. "Empirical determination of effective gap penalties for sequence comparison." Bioinformatics 18.11 (2002): 
1500-1507.

Despite some work+, the setting of gap penalties is still much more 
arbitrary than the selection of a substitution matrix.

✭Gap penalty values are designed to reduce the score when an 
alignment has been disturbed by indels. The value should be 
small enough to allow a previously accumulated alignment to 
continue with an insertion of one of the sequences, but should 
not be so large that this previous alignment score is removed 
completely.

✭ http://en.wikipedia.org/wiki/Gap_penalty

Changing the gap function can have significant effects on reported 
alignments. People often resort to “defaults” to avoid having to 
justify a choice.

http://en.wikipedia.org/wiki/Gap_penalty

