
CSE 549: Genome Assembly 
Intro & OLC

All slides in this lecture not marked with “*” courtesy of Ben Langmead.



Shotgun Sequencing

Many copies 
of the DNA

Shear it, randomly breaking them into many small pieces,  
read ends of each:

Assemble into original genome:

* Slide from Carl Kingsford



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 

* Slide from Mike Schatz



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 

* Slide from Mike Schatz



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 

* Slide from Mike Schatz



Assembly

Whole-genome “shotgun” sequencing starts by copying and 
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole 
genome; like it was fired from a shotgun)



Assembly

Assume sequencing produces such a large # fragments that almost 
all genome positions are covered by many fragments...

Reconstruct 
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT



Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct 
this



Assembly

Key term: coverage.  Usually it’s short for average coverage: the average 
number of reads covering a position in the genome.

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x 



Assembly

Coverage could also refer to the number of reads covering a particular 
position in the genome:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage at this position = 6



Assembly

Basic principle: the more similarity there is between the end of one 
read and the beginning of another... 

...the more likely they are to have originated from overlapping 
stretches of the genome:

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG



Assembly

Say two reads truly originate from overlapping stretches of the 
genome.  Why might there be differences?

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG

1. Sequencing error

2. Difference between inhereted copies of a chromosome
E.g. humans are diploid; we have two copies of each chromosome, 
one from mother, one from father.  The copies can differ:

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG We’ll mostly ignore ploidy, but 

real tools must consider it
TCTATATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGGCC

Sequence from Mother:
Sequence from Father:

Read from Mother:

Read from Father:



How Much Coverage is Enough? Lander-
Waterman Statistics

How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L 
required to 
detect an overlap

An island is a contiguous group of reads that are 
connected by overlaps of length ≥ θL.  
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.
* Slide from Carl Kingsford

 Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical 
analysis". Genomics 2 (3): 231–239



Expected # of Islands
λ := N/g = probability a read starts at a given position  
(assuming random sampling)

Pr(k reads start in an interval of length x)  
x trials, want k “successes”, small probability λ of success 
Expected # of successes = λx 
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e

��x

(�x)k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

* Slide from Carl Kingsford



Expected # of Islands, 2 

Expected # of islands

We can rewrite this expression to depend more directly on the things 
we can control: c and θ 

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
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L
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* Slide from Carl Kingsford



Overlaps

Finding all overlaps is like building a directed graph where directed 
edges connect overlapping nodes (reads)

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

TCTATATCTCGGCTCTAGG

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

CTCGGCTCTAGCCCCTCATTTT
%%%||||||||%||||||||||
%%%GGCTCTAGGCCCTCATTTTTT

Suffix of source is 
similar to prefix of sink



Directed graph review

Directed graph G(V, E) consists of set of vertices, V and set of 
directed edges, E

Edge is drawn as a line with an arrow 
connecting two circles

Directed edge is an ordered pair of vertices.  
First is the source, second is the sink.

Vertex is drawn as a circle

a b

c d

V =  { a, b, c, d }
E =  { (a, b), (a, c), (c, b) }

Vertex also called node or point

Edge also called arc or line
Source Sink

Directed graph also called digraph



Overlap graph

Below: overlap graph, where an overlap is a suffix/prefix match 
of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of 
source and prefix of sink

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

CTCTAGGCC
%%%%%%|||
%%%%%%GCCCTCAAT

GCCCTCAAT
%%%%%||||
%%%%%CAATTTTT

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT  }

Edges (overlaps): { (a, b), (b, c) }

3 4



Overlap graph

Overlap graph could contain cycles.  A cycle is a path beginning 
and ending at the same vertex.

a: CTCTAGGCC b: GCCCTCACT c: CACTCTAGG

These happen when the DNA string 
itself is circular.  E.g. bacterial 
genomes are often circular; 
mitochondrial DNA is circular.

Cycles could also be due to repetitive 
DNA, as we’ll see

3 4

7

repetitive



Finding overlaps

How do we build the overlap graph?

What constitutes an overlap?

Assume for now an “overlap” is when a suffix of X of 
length ≥ l exactly matches a prefix of Y, where k is given

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

l



Finding overlaps

Overlap: length-l suffix of X matches length-l prefix of Y, where l is given

Simple idea: look in Y for occurrences of length-l suffix of X.   Extend 
matches to the left to confirm whether entire prefix of Y matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say k = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y, 
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we 
confirm that a length-6 prefix 
of Y matches a suffix of X

l



Finding overlaps

Example overlap graph with l = 3

ACGGCGC

CGCGTAC

3

CGCCGCT

3

GCGTACG3 GTACGGC5

ATATTGC

ATTGCGC

5

GCCGCTA

6
4

ATTATAT 4

TATATTG

5 6
4GCATTAT

5

3 6

3

3

5

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Edge label is 
overlap length



Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that 
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10



Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modified overlap 
graph where each edge has 
cost = - (length of overlap)

SCS corresponds to a path that 
visits every node once, minimizing 
total cost along path

That’s the Traveling Salesman 
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2



Shortest common superstring

Say we disregard edge weights and 
just look for a path that visits all the 
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem: 
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS 
is NP-hard



Shortest common superstring

Let’s take the hint give up on finding the shortest possible superstring

Non-optimal superstrings can be found with a greedy algorithm

At each step, the greedy algorithm “greedily” chooses longest 
remaining overlap, merges its source and sink



Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

%%ABA%ABB%AAA%AAB%BBB%BBA%BAB%BAA
2%BAAB%ABA%ABB%AAA%BBB%BBA%BAB
2%BABB%BAAB%ABA%AAA%BBB%BBA
2%BBAAB%BABB%ABA%AAA%BBB
2%BBBAAB%BABB%ABA%AAA
2%BBBAABA%BABB%AAA
2%BABBBAABA%AAA
1%BABBBAABAAA
%%BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

Greedy answer: 
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get 
merged before the next round



Shortest common superstring: greedy

But greedy algorithm is a good approximation; i.e. the superstring 
yielded by the greedy algorithm won’t be more than ~2.5 times longer 
than true SCS (see Gusfield 16.17.1)

Greedy algorithm is not guaranteed to choose overlaps yielding SCS



Shortest common superstring: greedy

%%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%TATATTG%GTACGGC%GCGTACG%ATATTGC
6%TATATTGC%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC%GCGTACG
6%CGCGTACG%TATATTGC%ATTATAT%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACG%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACGGC%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC
5%CGCGTACGGCGC%TATATTGCGC%ATTATAT%GCATTAT
5%CGCGTACGGCGC%GCATTATAT%TATATTGCGC
5%CGCGTACGGCGC%GCATTATATTGCGC
3%GCATTATATTGCGCGTACGGCGC
%%GCATTATATTGCGCGTACGGCGC

Input strings

Superstring

Greedy-SCS algorithm in action again (l = 3):



Shortest common superstring: greedy
Another setup for Greedy-SCS: assemble all substrings of length 6 
from string a_long_long_long_time.  l = 3.

%%ng_lon%_long_%a_long%long_l%ong_ti%ong_lo%long_t%g_long%g_time%ng_tim
5%ng_time%ng_lon%_long_%a_long%long_l%ong_ti%ong_lo%long_t%g_long
5%ng_time%g_long_%ng_lon%a_long%long_l%ong_ti%ong_lo%long_t
5%ng_time%long_ti%g_long_%ng_lon%a_long%long_l%ong_lo
5%ng_time%ong_lon%long_ti%g_long_%a_long%long_l
5%ong_lon%long_time%g_long_%a_long%long_l
5%long_lon%long_time%g_long_%a_long
5%long_lon%g_long_time%a_long
5%long_long_time%a_long
4%a_long_long_time
%%a_long_long_time

I only got back: a_long_long_time (missing a _long )

What happened?



Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
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Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
_long_

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_long_time
Total overlap: 39



Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
_long_

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4
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ng_tim

3
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4

4 5

3
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4
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3
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4

3

3
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5

a_long_long_time
Total overlap: 44 Better than the 

correct path!



Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

%%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%ong_time%a_long_l%_long_ti%long_tim
7%long_time%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%a_long_l%_long_ti
7%_long_time%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%a_long_l
7%_long_time%a_long_lo%long_lon%ng_long_%g_long_t%ong_long%g_long_l
7%_long_time%ong_long_%a_long_lo%long_lon%g_long_t%g_long_l
7%g_long_time%ong_long_%a_long_lo%long_lon%g_long_l
7%g_long_time%ong_long_%a_long_lon%g_long_l
7%g_long_time%ong_long_l%a_long_lon
7%g_long_time%a_long_long_l
3%a_long_long_long_time
%%a_long_long_long_time

Got the whole thing: a_long_long_long_time



Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure 
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l



Repeats

Repeats often foil assembly.  They certainly foil SCS, with its 
“shortest” criterion!

Reads might be too short to “resolve” repetitive sequences.  This is 
why sequencing vendors try to increase read length.

Algorithms that don’t pay attention to repeats (like our greedy 
SCS algorithm) might collapse them

a_long_long_long_time

a_long_long_time

collapse

The human genome is ~ 50% repetitive!



Repeats

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

the_worst_of_times_it_was_the_best_o3, 5

it_was_the_best_of_times_it_was_the_worst_of_timesInput:

l, k output

s_the_worst_of_times_it_was_the_best_of_t3, 7
_was_the_best_of_times_it_was_the_worst_of_tim3, 10

it_was_the_best_of_times_it_was_the_worst_of_times3, 13

Extract every substring of length k, then run Greedy-SCS.  
Do this for various l (min overlap length) and k.



Repeats

Basic principle: repeats foil assembly

Longer and longer substrings allow us to “anchor” more of the 
repeat to its non-repetitive context:

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells

ringing_of_the_bells_bells_bells_bells_bells_to_the_rhyhming

Often we can “walk in” from both sides.  When we meet in the 
middle, the repeat is resolved:



Repeats

Basic principle: repeats foil assembly

Yet another example using Greedy-SCS:

swinging_and_the_ringing_of_the_bells_bells3, 7

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bellsInput:

l, k output

swinging_and_the_ringing_of_the_bells_bells_bells3, 13
swinging_and_the_ringing_of_the_bells_bells_bells_bells_b3, 19
swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells3, 25

longer and longer substrings allow 
us to “reach” further into the repeat

read length



Repeats

Picture the portion of the overlap graph involving repeat A

Assume A is longer 
than read length

Repeat A

Lots of overlaps 
among reads from A

Even if we avoid collapsing copies of A, we can’t know which paths 
in correspond to which paths out

L1
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Shortest common superstring: post mortem

SCS is flawed as a way of formulating the assembly problem

No tractable way to find optimal SCS

SCS spuriously collapses repetitive sequences

Had to use Greedy-SCS.  Answers might be too long.

Answers might be too short, by a lot!

Need formulations that are (a) tractable, and (b) handle repeats as 
gracefully as possible

Remember: repeats foil assembly no matter the algorithm.  This is a 
property of read length and repetitiveness of the genome.



Taxonomy of assembly approaches

Search for most parsimonious explanation of the reads (shortest 
superstring)

Exact solutions are intractable (e.g. TSP), but a greedy 
approximation is possible

Any solution will collapse repeats spuriously

Search for “maximum likelihood” explanation of the reads; i.e. force 
solution to be consistent with uniform coverage

No solutions (that I know of ) are tractable

Give up on unresolvable repeats and use a tractable algorithm to 
assemble the resolvable portions.  This is what real tools do.

Medvedev, Paul, and Michael Brudno. "Maximum likelihood genome assembly." Journal of 
computational Biology 16.8 (2009): 1101-1116.

Boža, Vladimír, Broňa Brejová, and Tomáš Vinař. "GAML: Genome Assembly by Maximum Likelihood." 
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2014. 122-134.



Real-world assembly methods

Both handle unresolvable repeats by essentially leaving them out

Fragments are contigs (short for contiguous)

Unresolvable repeats break the assembly into fragments

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

a_long_long_long_time

a_long_long_time a_long+++++long_time

Assemble substrings 
with Greedy-SCS

Assemble substrings 
with OLC or DBG



Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine



Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig 



Finding overlaps

Can we be less naive than this?

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y, 
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we 
confirm that a length-6 prefix 
of Y matches a suffix of X

We’re doing this for every pair of input strings



Finding overlaps

Can we use suffix trees for overlapping?

Problem: Given a collection of strings S, for each string x in S find all 
overlaps involving a prefix of x and a suffix of another string y

Hint: Build a generalized suffix tree of the strings in S



Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let first string, GACATA, be our query.  From 
root, we follow path labeled with query.
Green edge tells us length-3 suffix of second 
string equals length-3 prefix of queryATAGAC

+++|||
+++GACATA



Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report 
any outgoing edge labeled with a separator.  
Each corresponds to a prefix/suffix match 
involving prefix of query string and suffix of 
string ending in the separator.

Strategy:
(1) Build tree
(2) 



Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

GACATA
+++|||
+++ATAGAC

GACATA
+++++|
+++++ATAGAC

ATAGAC
+++|||
+++GACATA

Now let query be second string: ATAGAC



Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

n strings of length d, total length N = nd, and 
a = # of string pairs that overlap

Time to build generalized suffix tree: O(N)
... to walk down red paths: O(N)
... to report all overlaps (green): O(a)
Overall: O(N + a)

Bounds don’t include n2, 
but a is O(n2) in worst case



Finding overlaps

What if we want to allow mismatches and 
gaps in the overlap? CTCGGCCCTAGG

+++|||+|||||
+++GGCTCTAGGCCC

X:

Y:I.e. How do we find the best alignment of a 
suffix of X to a prefix of Y?

Dynamic programming

But we must frame the problem such that only backtraces 
involving a suffix of X and a prefix of Y are allowed



Recall: Semi-global Alignment

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are 
free.  Useful when one one string is significantly shorter than the 
other or we want to find an overlap between the suffix of one string 
and a prefix of the other

x
y

sometimes  called “cost-free-ends” or “fitting” alignment

sometimes  called “overlap” alignment

This variant is useful for our purposes here



Finding overlaps with dynamic programming

Number of overlaps to try: O(n2)
Size of each dynamic programming matrix: O(d2)
Overall: O(n2d2) = O(N2)

Say there are n strings of length d, total length N = nd, and a is 
total number of pairs with an overlap

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(n2)

But dynamic programming is more flexible, allowing mismatches and gaps

In practice, overlappers are between the two, using indexes to filter away 
non-overlapping pairs, then dynamic programming for the remainder



Finding overlaps

Overlapping is typically the slowest part of assembly

Consider a second-generation sequencing dataset with 
hundreds of millions or billions of reads!

Approaches from alignment unit can be adapted to finding overlaps

Could also have adapted efficient exact matching, 
approximate string matching, co-traversal, ...

We saw adaptations of naive exact matching, suffix-tree-
assisted exact matching, and dynamic programming



Finding overlaps

http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA#Overlapper

Celera Assembler’s overlapper is probably the best documented:

Inverted substring indexes built on batches of reads

Only look for overlaps between reads that share one or more 
substrings of some length

Inverted substring index is a “k-mer” lookup table. 
It maps every short fixed-length substring to the set of 
reads where it occurs.



. 

. 

.

Utility of an inverted index
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1, 5, 6, 17

1, 6, 24

1, 6, 22

Only reads sharing at least 1 indexed substring can 
possibly have an exact overlap. Checking only 
these pairs greatly reduces the burden of detecting 
overlaps. However, overlapping can still be one of 
the slowest steps in an assembly.



Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig 



Layout

The overlap graph is big and messy.  Contigs don’t “pop out” at us.

Below: part of the overlap graph for 
to_every_thing_turn_turn_turn_there_is_a_season
l = 4, k = 7
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Layout

Picture gets clearer after removing some transitively-inferrible 
edges

abc bcd cde2 2

1

abc bcd cde
2 2



Layout

Remove transitively-inferrible edges, starting with edges that skip one 
node:
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After:

x
Remove transitively-inferrible edges, starting with edges that skip one 
node:

These edges are between reads whose overlaps 
completely encompass the center node.
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Remove transitively-inferrible edges, starting with edges that skip one 
or two nodes: x

Even simpler

After:



Layout

Emit contigs corresponding to the non-branching stretches
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Unresolvable repeat



Layout

In practice, layout step also has to deal with spurious subgraphs, e.g. 
because of sequencing error

Possible repeat 
boundary

Mismatcha
b

Mismatch could be due to sequencing error or repeat.  Since the path 
through b ends abruptly we might conclude it’s an error and prune b.

...

a

bprune

Modern assemblers are full of such “heuristics” — wisdom 
gained from running them on a lot of data.



Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig 



Consensus

Take reads that make 
up a contig and line 
them up

At each position, ask: what nucleotide (and/or gap) is here?

Complications: (a) sequencing error, (b) ploidy

Say the true genotype is AG, but we have a high sequencing error rate 
and only about 6 reads covering the position.

TAGATTACACAGATTACTGA+TTGATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG+TTACACAGATTATTGACTTCATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA
Take consensus, i.e. 
majority vote



Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig 

What’s the main drawback of OLC?

Building overlap graph is slow.  We saw O(N + a) and O(N2) approaches

2nd-generation sequencing datasets are ~ 100s of millions or billions of 
reads, hundreds of billions of nucleotides total



Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine



Scaffolding with mate pair information
Paired-end and Mate-pairs 

Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 

* Slide from Mike Schatz



Scaffolding 
•  Initial contigs (aka unipaths, unitigs) 

terminate at 
–  Coverage gaps: especially extreme GC 
–  Conflicts: errors, repeat boundaries 

•  Use mate-pairs to resolve correct order 
through assembly graph 
–  Place sequence to satisfy the mate constraints 
–  Mates through repeat nodes are tangled 

•  Final scaffold may have internal gaps called  
sequencing gaps 
–  We know the order, orientation, and spacing, 

but just not the bases. Fill with Ns instead 

A 

C 

D 

R 

B 

A C D R B R R 

Scaffolding

* Slide from Mike Schatz



Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine

✓


