
CSE 549: Genome Assembly
Intro & OLC

All slides in this lecture not marked with “*” courtesy of Ben Langmead.

Shotgun Sequencing

Many copies
of the DNA

Shear it, randomly breaking them into many small pieces,
read ends of each:

Assemble into original genome:

* Slide from Carl Kingsford

Milestones in Genome Assembly

2000. Myers et al.
1st Large WGS Assembly.

Celera Assembler. 116 Mbp

1995. Fleischmann et al.
1st Free Living Organism
TIGR Assembler. 1.8Mbp

2010. Li et al.
1st Large SGS Assembly.
SOAPdenovo 2.2 Gbp

1977. Sanger et al.
1st Complete Organism

5375 bp

2001. Venter et al., IHGSC
Human Genome

Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC
1st Multicellular Organism

BAC-by-BAC Phrap. 97Mbp

Like Dickens, we must computationally reconstruct a genome from short fragments

* Slide from Mike Schatz

Assembly Applications
•  Novel genomes

•  Metagenomes

•  Sequencing assays
– Structural variations
– Transcript assembly
– …

* Slide from Mike Schatz

Ingredients for a good assembly

Current challenges in de novo plant genome sequencing and assembly
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Coverage

High coverage is required
–  Oversample the genome to ensure

every base is sequenced with long
overlaps between reads

–  Biased coverage will also fragment
assembly

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
xp

e
ct

e
d
 C

o
n
tig

 L
e
n
g
th

 (
b
p
)

0 5 10 15 20 25 30 35 40

1
0
0

1
k

1
0
k

1
0
0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Read Coverage

E
xp

ec
te

d
C

on
ti

g
Le

ng
th

Read Length

Reads & mates must be longer
than the repeats
–  Short reads will have false overlaps

forming hairball assembly graphs
–  With long enough reads, assemble

entire chromosomes into contigs

Quality

Errors obscure overlaps
–  Reads are assembled by finding

kmers shared in pair of reads
–  High error rate requires very short

seeds, increasing complexity and
forming assembly hairballs

* Slide from Mike Schatz

Assembly

Whole-genome “shotgun” sequencing starts by copying and
fragmenting the DNA

Input: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Copy: GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Fragment: GGCGTCTA%%TATCTCGG%%CTCTAGGCCCTC%%ATTTTTT
GGC%%GTCTATAT%%CTCGGCTCTAGGCCCTCA%%TTTTTT
GGCGTC%%TATATCT%%CGGCTCTAGGCCCT%%CATTTTTT
GGCGTCTAT%%ATCTCGGCTCTAG%%GCCCTCA%%TTTTTT

(“Shotgun” refers to the random fragmentation of the whole
genome; like it was fired from a shotgun)

Assembly

Assume sequencing produces such a large # fragments that almost
all genome positions are covered by many fragments...

Reconstruct
this From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Assembly

...but we don’t know what came from where

From these

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

CTAGGCCCTCAATTTTT
GGCGTCTATATCT
CTCTAGGCCCTCAATTTTT
TCTATATCTCGGCTCTAGG
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA
GGCGTCGATATCT
TATCTCGACTCTAGGCC
GGCGTCTATATCTCG

Reconstruct
this

Assembly

Key term: coverage. Usually it’s short for average coverage: the average
number of reads covering a position in the genome.

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

177 nucleotides

35 nucleotides

Average coverage = 177 / 35 ≈ 7x

Assembly

Coverage could also refer to the number of reads covering a particular
position in the genome:

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%%%%%%%%%%%CTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%%%CTCTAGGCCCTCAATTTTT
%%%%%%%%%%%%%%GGCTCTAGGCCCTCATTTTTT
%%%%%%%%%%%CTCGGCTCTAGCCCCTCATTTT
%%%%%%%%TATCTCGACTCTAGGCCCTCA
%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

Coverage at this position = 6

Assembly

Basic principle: the more similarity there is between the end of one
read and the beginning of another...

...the more likely they are to have originated from overlapping
stretches of the genome:

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

%%%%%%%%TATCTCGACTCTAGGCC
%%%%TCTATATCTCGGCTCTAGG

Assembly

Say two reads truly originate from overlapping stretches of the
genome. Why might there be differences?

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG

1. Sequencing error

2. Difference between inhereted copies of a chromosome
E.g. humans are diploid; we have two copies of each chromosome,
one from mother, one from father. The copies can differ:

%%%%%%%%TATCTCGACTCTAGGCC
%%%%%%%%|||||||%|||||||
%%%%TCTATATCTCGGCTCTAGG We’ll mostly ignore ploidy, but

real tools must consider it
TCTATATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGGCC

Sequence from Mother:
Sequence from Father:

Read from Mother:

Read from Father:

How Much Coverage is Enough? Lander-
Waterman Statistics

How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L
required to
detect an overlap

An island is a contiguous group of reads that are
connected by overlaps of length ≥ θL.  
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.
* Slide from Carl Kingsford

 Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical
analysis". Genomics 2 (3): 231–239

Expected # of Islands
λ := N/g = probability a read starts at a given position  
(assuming random sampling)

Pr(k reads start in an interval of length x)
x trials, want k “successes”, small probability λ of success
Expected # of successes = λx
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e

��x

(�x)k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

* Slide from Carl Kingsford

Expected # of Islands, 2

Expected # of islands

We can rewrite this expression to depend more directly on the things
we can control: c and θ

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
g

L
ce�(1�✓)c

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

100

200

300

400

500

600

700

L = 1000; g = 1000000

θ = 0.15

θ = 0.35

c

Ex
pe

ct
ed

 #
 is

la
nd

s

* Slide from Carl Kingsford

Overlaps

Finding all overlaps is like building a directed graph where directed
edges connect overlapping nodes (reads)

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

TCTATATCTCGGCTCTAGG

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGCCCCTCATTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

CTCGGCTCTAGCCCCTCATTTT
%%%||||||||%||||||||||
%%%GGCTCTAGGCCCTCATTTTTT

Suffix of source is
similar to prefix of sink

Directed graph review

Directed graph G(V, E) consists of set of vertices, V and set of
directed edges, E

Edge is drawn as a line with an arrow
connecting two circles

Directed edge is an ordered pair of vertices.
First is the source, second is the sink.

Vertex is drawn as a circle

a b

c d

V = { a, b, c, d }
E = { (a, b), (a, c), (c, b) }

Vertex also called node or point

Edge also called arc or line
Source Sink

Directed graph also called digraph

Overlap graph

Below: overlap graph, where an overlap is a suffix/prefix match
of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of
source and prefix of sink

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

CTCTAGGCC
%%%%%%|||
%%%%%%GCCCTCAAT

GCCCTCAAT
%%%%%||||
%%%%%CAATTTTT

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT }

Edges (overlaps): { (a, b), (b, c) }

3 4

Overlap graph

Overlap graph could contain cycles. A cycle is a path beginning
and ending at the same vertex.

a: CTCTAGGCC b: GCCCTCACT c: CACTCTAGG

These happen when the DNA string
itself is circular. E.g. bacterial
genomes are often circular;
mitochondrial DNA is circular.

Cycles could also be due to repetitive
DNA, as we’ll see

3 4

7

repetitive

Finding overlaps

How do we build the overlap graph?

What constitutes an overlap?

Assume for now an “overlap” is when a suffix of X of
length ≥ l exactly matches a prefix of Y, where k is given

a: CTCTAGGCC b: GCCCTCAAT c: CAATTTTT

l

Finding overlaps

Overlap: length-l suffix of X matches length-l prefix of Y, where l is given

Simple idea: look in Y for occurrences of length-l suffix of X. Extend
matches to the left to confirm whether entire prefix of Y matches.

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say k = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y,
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we
confirm that a length-6 prefix
of Y matches a suffix of X

l

Finding overlaps

Example overlap graph with l = 3

ACGGCGC

CGCGTAC

3

CGCCGCT

3

GCGTACG3 GTACGGC5

ATATTGC

ATTGCGC

5

GCCGCTA

6
4

ATTATAT 4

TATATTG

5 6
4GCATTAT

5

3 6

3

3

5

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Edge label is
overlap length

Shortest common superstring

Given a collection of strings S, find SCS(S): the shortest string that
contains all strings in S as substrings

Without requirement of “shortest,” it’s easy: just concatenate them

Example: BAA%AAB%BBA%ABA%ABB%BBB%AAA%BAB

BAAAABBBAABAABBBBBAAABABConcatenation:

S:

SCS(S): AAABBBABAA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBA
%%%%%BAB
%%%%%%ABA
%%%%%%%BAA

24

10

Shortest common superstring

Can we solve it?
SCS(S): AAABBBA

AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

-2

-1-1-1
-2

-1

-2

-2 -2

-1

Imagine a modified overlap
graph where each edge has
cost = - (length of overlap)

SCS corresponds to a path that
visits every node once, minimizing
total cost along path

That’s the Traveling Salesman
Problem (TSP), which is NP-hard!

S: AAA%AAB%ABB%BBB%BBA

-2

Shortest common superstring

Say we disregard edge weights and
just look for a path that visits all the
nodes exactly once

S: AAA%AAB%ABB%BBB%BBA

That’s the Hamiltonian Path problem:
NP-complete

SCS(S): AAABBBA
AAA
%AAB
%%ABB
%%%BBB
%%%%BBAAAB

ABB

BBABBB

AAA

Indeed, it’s well established that SCS
is NP-hard

Shortest common superstring

Let’s take the hint give up on finding the shortest possible superstring

Non-optimal superstrings can be found with a greedy algorithm

At each step, the greedy algorithm “greedily” chooses longest
remaining overlap, merges its source and sink

Shortest common superstring: greedy

Greedy-SCS algorithm in action (l = 1):

%%ABA%ABB%AAA%AAB%BBB%BBA%BAB%BAA
2%BAAB%ABA%ABB%AAA%BBB%BBA%BAB
2%BABB%BAAB%ABA%AAA%BBB%BBA
2%BBAAB%BABB%ABA%AAA%BBB
2%BBBAAB%BABB%ABA%AAA
2%BBBAABA%BABB%AAA
2%BABBBAABA%AAA
1%BABBBAABAAA
%%BABBBAABAAA

Input strings

Superstring

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

Greedy answer:
BABBBAABAAA

Actual SCS:
AAABBBABAA

In red are strings that get
merged before the next round

Shortest common superstring: greedy

But greedy algorithm is a good approximation; i.e. the superstring
yielded by the greedy algorithm won’t be more than ~2.5 times longer
than true SCS (see Gusfield 16.17.1)

Greedy algorithm is not guaranteed to choose overlaps yielding SCS

Shortest common superstring: greedy

%%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%TATATTG%GTACGGC%GCGTACG%ATATTGC
6%TATATTGC%ATTATAT%CGCGTAC%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC%GCGTACG
6%CGCGTACG%TATATTGC%ATTATAT%ATTGCGC%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACG%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC%GTACGGC
5%CGCGTACGGC%TATATTGCGC%ATTATAT%GCATTAT%ACGGCGC
5%CGCGTACGGCGC%TATATTGCGC%ATTATAT%GCATTAT
5%CGCGTACGGCGC%GCATTATAT%TATATTGCGC
5%CGCGTACGGCGC%GCATTATATTGCGC
3%GCATTATATTGCGCGTACGGCGC
%%GCATTATATTGCGCGTACGGCGC

Input strings

Superstring

Greedy-SCS algorithm in action again (l = 3):

Shortest common superstring: greedy
Another setup for Greedy-SCS: assemble all substrings of length 6
from string a_long_long_long_time. l = 3.

%%ng_lon%_long_%a_long%long_l%ong_ti%ong_lo%long_t%g_long%g_time%ng_tim
5%ng_time%ng_lon%_long_%a_long%long_l%ong_ti%ong_lo%long_t%g_long
5%ng_time%g_long_%ng_lon%a_long%long_l%ong_ti%ong_lo%long_t
5%ng_time%long_ti%g_long_%ng_lon%a_long%long_l%ong_lo
5%ng_time%ong_lon%long_ti%g_long_%a_long%long_l
5%ong_lon%long_time%g_long_%a_long%long_l
5%long_lon%long_time%g_long_%a_long
5%long_lon%g_long_time%a_long
5%long_long_time%a_long
4%a_long_long_time
%%a_long_long_time

I only got back: a_long_long_time (missing a _long)

What happened?

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_long_time
Total overlap: 39

Shortest common superstring: greedy

The overlap graph for that scenario (l = 3):

ng_lon
long

4

long_l
3

long_t

3

g_long

5

3

5

ong_ti4

ong_lo4

5
ng_tim

3

a_long

5

4

3

3

4

4 5

3

g_time

4
5

5

3

4

5

3

4

5

4

3

3

4

5

a_long_long_time
Total overlap: 44 Better than the

correct path!

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

%%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%ong_time%a_long_l%_long_ti%long_tim
7%long_time%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%a_long_l%_long_ti
7%_long_time%long_lon%ng_long_%_long_lo%g_long_t%ong_long%g_long_l%a_long_l
7%_long_time%a_long_lo%long_lon%ng_long_%g_long_t%ong_long%g_long_l
7%_long_time%ong_long_%a_long_lo%long_lon%g_long_t%g_long_l
7%g_long_time%ong_long_%a_long_lo%long_lon%g_long_l
7%g_long_time%ong_long_%a_long_lon%g_long_l
7%g_long_time%ong_long_l%a_long_lon
7%g_long_time%a_long_long_l
3%a_long_long_long_time
%%a_long_long_long_time

Got the whole thing: a_long_long_long_time

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure
out there are 3 copies of long?

a_long_long_long_time

One length-8 substring spans all three longs

g_long_l

Repeats

Repeats often foil assembly. They certainly foil SCS, with its
“shortest” criterion!

Reads might be too short to “resolve” repetitive sequences. This is
why sequencing vendors try to increase read length.

Algorithms that don’t pay attention to repeats (like our greedy
SCS algorithm) might collapse them

a_long_long_long_time

a_long_long_time

collapse

The human genome is ~ 50% repetitive!

Repeats

Basic principle: repeats foil assembly

Another example using Greedy-SCS:

the_worst_of_times_it_was_the_best_o3, 5

it_was_the_best_of_times_it_was_the_worst_of_timesInput:

l, k output

s_the_worst_of_times_it_was_the_best_of_t3, 7
_was_the_best_of_times_it_was_the_worst_of_tim3, 10

it_was_the_best_of_times_it_was_the_worst_of_times3, 13

Extract every substring of length k, then run Greedy-SCS.
Do this for various l (min overlap length) and k.

Repeats

Basic principle: repeats foil assembly

Longer and longer substrings allow us to “anchor” more of the
repeat to its non-repetitive context:

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells

ringing_of_the_bells_bells_bells_bells_bells_to_the_rhyhming

Often we can “walk in” from both sides. When we meet in the
middle, the repeat is resolved:

Repeats

Basic principle: repeats foil assembly

Yet another example using Greedy-SCS:

swinging_and_the_ringing_of_the_bells_bells3, 7

swinging_and_the_ringing_of_the_bells_bells_bells_bells_bellsInput:

l, k output

swinging_and_the_ringing_of_the_bells_bells_bells3, 13
swinging_and_the_ringing_of_the_bells_bells_bells_bells_b3, 19
swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells3, 25

longer and longer substrings allow
us to “reach” further into the repeat

read length

Repeats

Picture the portion of the overlap graph involving repeat A

Assume A is longer
than read length

Repeat A

Lots of overlaps
among reads from A

Even if we avoid collapsing copies of A, we can’t know which paths
in correspond to which paths out

L1
L2
L3
L4

R1
R2

R3

R4

L1
L2
L3
L4

R1

R2

R3

R4

St
re

tc
he

s o
f

ge
no

m
e

Re
ad

s

Shortest common superstring: post mortem

SCS is flawed as a way of formulating the assembly problem

No tractable way to find optimal SCS

SCS spuriously collapses repetitive sequences

Had to use Greedy-SCS. Answers might be too long.

Answers might be too short, by a lot!

Need formulations that are (a) tractable, and (b) handle repeats as
gracefully as possible

Remember: repeats foil assembly no matter the algorithm. This is a
property of read length and repetitiveness of the genome.

Taxonomy of assembly approaches

Search for most parsimonious explanation of the reads (shortest
superstring)

Exact solutions are intractable (e.g. TSP), but a greedy
approximation is possible

Any solution will collapse repeats spuriously

Search for “maximum likelihood” explanation of the reads; i.e. force
solution to be consistent with uniform coverage

No solutions (that I know of) are tractable

Give up on unresolvable repeats and use a tractable algorithm to
assemble the resolvable portions. This is what real tools do.

Medvedev, Paul, and Michael Brudno. "Maximum likelihood genome assembly." Journal of
computational Biology 16.8 (2009): 1101-1116.

Boža, Vladimír, Broňa Brejová, and Tomáš Vinař. "GAML: Genome Assembly by Maximum Likelihood."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2014. 122-134.

Real-world assembly methods

Both handle unresolvable repeats by essentially leaving them out

Fragments are contigs (short for contiguous)

Unresolvable repeats break the assembly into fragments

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

a_long_long_long_time

a_long_long_time a_long+++++long_time

Assemble substrings
with Greedy-SCS

Assemble substrings
with OLC or DBG

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Finding overlaps

Can we be less naive than this?

CTCTAGGCC

TAGGCCCTC

X:

Y:

Say l = 3

CTCTAGGCC

TAGGCCCTC

X:

Y:

Look for this in Y,
going right-to-left

Found it

CTCTAGGCC

TAGGCCCTC

X:

Y:

Extend to left; in this case, we
confirm that a length-6 prefix
of Y matches a suffix of X

We’re doing this for every pair of input strings

Finding overlaps

Can we use suffix trees for overlapping?

Problem: Given a collection of strings S, for each string x in S find all
overlaps involving a prefix of x and a suffix of another string y

Hint: Build a generalized suffix tree of the strings in S

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

Let first string, GACATA, be our query. From
root, we follow path labeled with query.
Green edge tells us length-3 suffix of second
string equals length-3 prefix of queryATAGAC

+++|||
+++GACATA

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match
involving prefix of query string and suffix of
string ending in the separator.

Strategy:
(1) Build tree
(2)

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

GACATA
+++|||
+++ATAGAC

GACATA
+++++|
+++++ATAGAC

ATAGAC
+++|||
+++GACATA

Now let query be second string: ATAGAC

Finding overlaps with suffix tree
Generalized suffix tree for { “GACATA”, “ATAGAC” } GACATA$0ATAGAC$1

A

6

$0 C

13

$ 1 GAC TA

5

$0 C TA

9

GAC$ 1

1

ATA$0

11

$ 1

3

$ 0

7

GAC$ 1

2

ATA$0

12

$ 1

0

ATA$0

10

$ 1

4

$ 0

8

GAC$ 1

n strings of length d, total length N = nd, and
a = # of string pairs that overlap

Time to build generalized suffix tree: O(N)
... to walk down red paths: O(N)
... to report all overlaps (green): O(a)
Overall: O(N + a)

Bounds don’t include n2,
but a is O(n2) in worst case

Finding overlaps

What if we want to allow mismatches and
gaps in the overlap? CTCGGCCCTAGG

+++|||+|||||
+++GGCTCTAGGCCC

X:

Y:I.e. How do we find the best alignment of a
suffix of X to a prefix of Y?

Dynamic programming

But we must frame the problem such that only backtraces
involving a suffix of X and a prefix of Y are allowed

Recall: Semi-global Alignment

x
y

Semi-global (glocal): Gaps at the beginning or end of x or y are
free. Useful when one one string is significantly shorter than the
other or we want to find an overlap between the suffix of one string
and a prefix of the other

x
y

sometimes called “cost-free-ends” or “fitting” alignment

sometimes called “overlap” alignment

This variant is useful for our purposes here

Finding overlaps with dynamic programming

Number of overlaps to try: O(n2)
Size of each dynamic programming matrix: O(d2)
Overall: O(n2d2) = O(N2)

Say there are n strings of length d, total length N = nd, and a is
total number of pairs with an overlap

Contrast O(N2) with suffix tree: O(N + a), but where a is worst-case O(n2)

But dynamic programming is more flexible, allowing mismatches and gaps

In practice, overlappers are between the two, using indexes to filter away
non-overlapping pairs, then dynamic programming for the remainder

Finding overlaps

Overlapping is typically the slowest part of assembly

Consider a second-generation sequencing dataset with
hundreds of millions or billions of reads!

Approaches from alignment unit can be adapted to finding overlaps

Could also have adapted efficient exact matching,
approximate string matching, co-traversal, ...

We saw adaptations of naive exact matching, suffix-tree-
assisted exact matching, and dynamic programming

Finding overlaps

http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA#Overlapper

Celera Assembler’s overlapper is probably the best documented:

Inverted substring indexes built on batches of reads

Only look for overlaps between reads that share one or more
substrings of some length

Inverted substring index is a “k-mer” lookup table.
It maps every short fixed-length substring to the set of
reads where it occurs.

.

.

.

Utility of an inverted index
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1, 5, 6, 17

1, 6, 24

1, 6, 22

Only reads sharing at least 1 indexed substring can
possibly have an exact overlap. Checking only
these pairs greatly reduces the burden of detecting
overlaps. However, overlapping can still be one of
the slowest steps in an assembly.

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Layout

The overlap graph is big and messy. Contigs don’t “pop out” at us.

Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season
l = 4, k = 7

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Layout

Picture gets clearer after removing some transitively-inferrible
edges

abc bcd cde2 2

1

abc bcd cde
2 2

Layout

Remove transitively-inferrible edges, starting with edges that skip one
node:

ry
_t
hi
n

th
in
g_
t

4

_t
hi
ng
_

5
y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

_t
ur
n_
t

4

n_
tu
rn
_5

a_
se
as
o

_s
ea
so
n

6

5

6 tu
rn
_t
u

4

tu
rn
_t
h4

he
re
_i
s

e_
is_
a_

4

er
e_
is_

6

re
_i
s_
a

5

in
g_
tu
r

5
hi
ng
_t
u

6

ng
_t
ur
n

4

ur
n_
th
e

_t
he
re
_

4

n_
th
er
e

5
rn
_t
he
r

6 5

4

th
er
e_
i

6

ve
ry
_t
h

5
er
y_
th
i

6

4

_e
ve
ry
_

5

4

ev
er
y_
t

6

6

4

5

is_
a_
se

5

s_
a_
se
a

4

_i
s_
a_
s

6

6

4

5

4

6

5

5

4

5

4

6
6

4

6

5

o_
ev
er
y

4

6

5

4

6

g_
tu
rn
_

5

5

6

4

4

_a
_s
ea
s

5

6

5

6

4

6 5

4

4

4

6 5
5

6

5

4

6

5

5

4
4

6

to
_e
ve
r

5

4

6

5

6

4

6

4

5

6

5

4

6

4

5

56

4

6

4

5

4

4

6

5
5

Before:

x

Layout

ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6 ur
n_
th
e

rn
_t
he
r6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

in
g_
tu
r

4

e_
is_
a_

_i
s_
a_
s

6

6

4

4

6

_t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h6

n_
th
er
e

4

6

o_
ev
er
y 4

6

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

4 4

6

6

g_
tu
rn
_

4

_a
_s
ea
s

6

6

to
_e
ve
r

6

6

6

4

4

6

4

6

6

44

4

6

After:

x
Remove transitively-inferrible edges, starting with edges that skip one
node:

These edges are between reads whose overlaps
completely encompass the center node.

Layout
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6

x
Remove transitively-inferrible edges, starting with edges that skip one
or two nodes: x

Even simpler

After:

Layout

Emit contigs corresponding to the non-branching stretches
ry
_t
hi
n

y_
th
in
g

6

ur
n_
tu
r

rn
_t
ur
n

6

a_
se
as
o

_s
ea
so
n

6

n_
tu
rn
_

6

he
re
_i
s

er
e_
is_6

th
in
g_
t

hi
ng
_t
u

6

ur
n_
th
e

rn
_t
he
r

6

_t
he
re
_

th
er
e_
i

6

ve
ry
_t
h

er
y_
th
i

6

_e
ve
ry
_

ev
er
y_
t

6

_t
hi
ng
_

6

e_
is_
a_

_i
s_
a_
s

6

66 _t
ur
n_
t

tu
rn
_t
u

6

tu
rn
_t
h

6

n_
th
er
e

6

o_
ev
er
y

6

in
g_
tu
r

ng
_t
ur
n

6

re
_i
s_
a

6

is_
a_
se

s_
a_
se
a

6

6

6

4

6

6

_a
_s
ea
s

6

g_
tu
rn
_

6

to
_e
ve
r

6

6 6

4

6 66

4

6
to_every_thing_turn_ turn_there_is_a_season
Contig 1 Contig 2

Unresolvable repeat

Layout

In practice, layout step also has to deal with spurious subgraphs, e.g.
because of sequencing error

Possible repeat
boundary

Mismatcha
b

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

...

a

bprune

Modern assemblers are full of such “heuristics” — wisdom
gained from running them on a lot of data.

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Consensus

Take reads that make
up a contig and line
them up

At each position, ask: what nucleotide (and/or gap) is here?

Complications: (a) sequencing error, (b) ploidy

Say the true genotype is AG, but we have a high sequencing error rate
and only about 6 reads covering the position.

TAGATTACACAGATTACTGA+TTGATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG+TTACACAGATTATTGACTTCATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA+CTA
Take consensus, i.e.
majority vote

Overlap Layout Consensus

Overlap

Layout

Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

What’s the main drawback of OLC?

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches

2nd-generation sequencing datasets are ~ 100s of millions or billions of
reads, hundreds of billions of nucleotides total

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine

Scaffolding with mate pair information
Paired-end and Mate-pairs

Paired-end sequencing
•  Read one end of the molecule, flip, and read the other end
•  Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence
•  Mate failures create short paired-end reads

10kbp

10kbp
circle

300bp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

* Slide from Mike Schatz

Scaffolding
•  Initial contigs (aka unipaths, unitigs)

terminate at
–  Coverage gaps: especially extreme GC
–  Conflicts: errors, repeat boundaries

•  Use mate-pairs to resolve correct order
through assembly graph
–  Place sequence to satisfy the mate constraints
–  Mates through repeat nodes are tangled

•  Final scaffold may have internal gaps called
sequencing gaps
–  We know the order, orientation, and spacing,

but just not the bases. Fill with Ns instead

A

C

D

R

B

A C D R B R R

Scaffolding

* Slide from Mike Schatz

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap

Layout

Consensus

Error correction

de Bruijn graph

Scaffolding

Refine

✓

