CSE 549: Genome Assembly Intro \& OLC

Shotgun Sequencing

Many copies of the DNA

Shear it, randomly breaking them into many small pieces, read ends of each:

Assemble into original genome:

Milestones in Genome Assembly

1977. Sanger et al.
${ }^{\text {st }}$ Complete Organism 5375 bp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism
TIGR Assembler. I.8Mbp

200I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC
${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (2012) Genome Biology. I2:243

Assembly

Whole-genome"shotgun" sequencing starts by copying and fragmenting the DNA
("Shotgun" refers to the random fragmentation of the whole genome; like it was fired from a shotgun)

$$
\begin{aligned}
\text { Input: } & \text { GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT } \\
\text { Copy: } & \text { GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT } \\
& \text { GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT } \\
& \text { GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT } \\
& \text { GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT }
\end{aligned}
$$

Fragment: GGCGTCTA TATCTCGG CTCTAGGCCCTC ATTTTTT GGC GTCTATAT CTCGGCTCTAGGCCCTCA TTTTTT GGCGTC TATATCT CGGCTCTAGGCCCT CATTTTTT GGCGTCTAT ATCTCGGCTCTAG GCCCTCA TTTTTT

Assembly

Assume sequencing produces such a large \# fragments that almost all genome positions are covered by many fragments...

Assembly

...but we don't know what came from where

	CTAGGCCCTCAATTTTT
	GGCGTCTATATCT
Reconstruct	
this	CTCTAGGCCCTCAATTTTT
	TCTATATCTCGGCTCTAGG
	GGCTCTAGGCCCTCATTTTTT
	CTCGGCTCTAGCCCCTCATTTT
	TATCTCGACTCTAGGCCCTCA
	GGCGTCGATATCT
	TATCTCGACTCTAGGCC
	GGCGTCTATATCTCG
	GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Assembly

Key term: coverage. Usually it's short for average coverage: the average number of reads covering a position in the genome.

```
                                    CTAGGCCCTCAATTTTT
                                    CTCTAGGCCCTCAATTTTT
                                    GGCTCTAGGCCCTCATTTTTT
                                    CTCGGCTCTAGCCCCTCATTTT
                                    TATCTCGACTCTAGGCCCTCA
                                    TATCTCGACTCTAGGCC
                                    TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT }35\mathrm{ nucleotides
```

Average coverage $=177 / 35 \approx 7 x$

Assembly

Coverage could also refer to the number of reads covering a particular position in the genome:

Assembly

Basic principle: the more similarity there is between the end of one read and the beginning of another...

...the more likely they are to have originated from overlapping stretches of the genome:

TATCTCGACTCTAGGCC

Assembly

Say two reads truly originate from overlapping stretches of the genome. Why might there be differences?

> TATCTCGACTCTAGGCC
> ||||||| ||||||
> tCTATATCTCGGCTCTAGG \uparrow

1. Sequencing error
2. Difference between inhereted copies of a chromosome
E.g. humans are diploid; we have two copies of each chromosome, one from mother, one from father. The copies can differ:

Read from Mother: TATCTCGACTCTAGGCC

We'll mostly ignore ploidy, but real tools must consider it

How Much Coverage is Enough? LanderWaterman Statistics

Lander ES, Waterman MS (1988). "Genomic mapping by fingerprinting random clones: a mathematical analysis". Genomics 2 (3): 231-239

How many reads to we need to be sure we cover the whole genome?

An island is a contiguous group of reads that are connected by overlaps of length $\geq \theta L$. (Various colors above)

Want: Expression for expected \# of islands given N, g, L, θ.

Expected \# of Islands

$\lambda:=N / g=$ probability a read starts at a given position (assuming random sampling)
$\operatorname{Pr}(k$ reads start in an interval of length $x)$ x trials, want k "successes", small probability λ of success Expected \# of successes $=\lambda x$ Poisson approximation to binomial distribution:

$$
\operatorname{Pr}(k \text { reads in length } x)=e^{-\lambda x} \frac{(\lambda x)^{k}}{k!}
$$

Expected \# of islands $=N \times \operatorname{Pr}($ read is at rightmost end of island $)$

$\because(1-\theta) \mathrm{L}$	$=N \times \operatorname{Pr}($ o reads start in $(1-\theta) L)$
	$=N e^{-\lambda(1-\theta) L} \frac{\lambda^{0}}{0!}$ (from above)
	$=N e^{-\lambda(1-\theta) L}$
	$=N e^{-(1-\theta) L N / g \quad \leftarrow L N / g \text { is called the coverage } c .}$

Expected \# of Islands, 2

We can rewrite this expression to depend more directly on the things we can control: c and θ

$$
\begin{aligned}
\text { Expected \# of islands } & =N e^{-(1-\theta) L N / g} \\
& =N e^{-(1-\theta) c} \\
& =\frac{L / g}{L / g} N e^{-(1-\theta) c} \\
& =\frac{g}{L} c e^{-(1-\theta) c}
\end{aligned}
$$

Overlaps

Finding all overlaps is like building a directed graph where directed edges connect overlapping nodes (reads)

Directed graph review

Directed graph $G(V, E)$ consists of set of vertices, V and set of directed edges, E

Directed edge is an ordered pair of vertices. First is the source, second is the sink.

Vertex is drawn as a circle
Edge is drawn as a line with an arrow connecting two circles

Vertex also called node or point
Edge also called arc or line

$$
\begin{aligned}
& V=\{a, b, c, d\} \\
& E=\{(a, b),(a, c),(c, b)\}
\end{aligned}
$$

Directed graph also called digraph

Overlap graph

Below: overlap graph, where an overlap is a suffix/prefix match of at least 3 characters

A vertex is a read, a directed edge is an overlap between suffix of source and prefix of sink

Overlap graph

Overlap graph could contain cycles. A cycle is a path beginning and ending at the same vertex.

7

These happen when the DNA string itself is circular. E.g. bacterial genomes are often circular; mitochondrial DNA is circular.

Cycles could also be due to repetitive DNA, as we'll see

Finding overlaps

How do we build the overlap graph?

What constitutes an overlap?
Assume for now an "overlap" is when a suffix of X of length $\geq l$ exactly matches a prefix of Y, where l is given

Finding overlaps

Overlap: length- l suffix of X matches length- l prefix of Y, where l is given
Simple idea: look in Y for occurrences of length- l suffix of X. Extend matches to the left to confirm whether entire prefix of Y matches.

Say $l=3$

Finding overlaps

Example overlap graph with $l=3$
Edge label is overlap length

Original string: GCATTATATATTGCGCGTACGGCGCCGCTACA

Shortest common superstring

Given a collection of strings S, find $\operatorname{SCS}(S)$: the shortest string that contains all strings in S as substrings

Without requirement of "shortest," it's easy: just concatenate them
Example: S : BAA AAB BBA ABA ABB BBB AAA BAB
Concatenation: BAAAABBBAABAABBBBBAAABAB
$\longmapsto-24 \longrightarrow$
SCS(S): AAABBBABAA
$\longmapsto-10 \longrightarrow$

Shortest common superstring

Can we solve it?
Imagine a modified overlap graph where each edge has cost $=-$ (length of overlap)

SCS corresponds to a path that visits every node once, minimizing total cost along path

That's the Traveling Salesman Problem (TSP), which is NP-hard!
S : AAA AAB ABB BBB BBA
SCS(S): AAABBBA

Shortest common superstring

Say we disregard edge weights and just look for a path that visits all the nodes exactly once

That's the Hamiltonian Path problem: NP-complete

Indeed, it's well established that SCS is NP -hard

S: AAA AAB ABB BBB BBA
SCS(S): AAABBBA
AAA AAB
ABB

Shortest common superstring

Let's take the hint give up on finding the shortest possible superstring
Non-optimal superstrings can be found with a greedy algorithm
At each step, the greedy algorithm "greedily" chooses longest remaining overlap, merges its source and sink

Shortest common superstring: greedy

Greedy-SCS algorithm in action ($l=1$):

ABA ABB AAA AAB BBB BBA BAB BAA
T 2 BAAB ABA ABB AAA BBB BBA BAB

2 BABB BAAB ABA AAA BBB BBA

2 BBAAB BABB ABA AAA BBB
2 BBBAAB BABB ABA AAA
2 BBBAABA BABB AAA
2 BABBBAABA AAA
1 BABBBAABAAA
BABBBAABAAA
\vdash Superstring -1

In red are strings that get
merged before the next round

Greedy answer:
BABBBAABAAA
Actual SCS:
AAABBBABAA

Rounds of merging, one merge per line.
Number in first column = length of overlap merged before that round.

Shortest common superstring: greedy

Greedy algorithm is not guaranteed to choose overlaps yielding SCS
But greedy algorithm is a good approximation; i.e. the superstring yielded by the greedy algorithm won't be more than ~ 2.5 times longer than true SCS (see Gusfield 16.17.1)

Shortest common superstring: greedy

Greedy-SCS algorithm in action again $(l=3)$:


```
    ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC
6 \text { TATATTGC ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC GTACGGC GCGTACG}
6 CGCGTACG TATATTGC ATTATAT ATTGCGC GCATTAT ACGGCGC GTACGGC
5 \text { CGCGTACG TATATTGCGC ATTATAT GCATTAT ACGGCGC GTACGGC}
5 \text { CGCGTACGGC TATATTGCGC ATTATAT GCATTAT ACGGCGC}
5 \text { CGCGTACGGCGC TATATTGCGC ATTATAT GCATTAT}
5 \text { CGCGTACGGCGC GCATTATAT TATATTGCGC}
5 \mp@code { C G C G T A C G G C G C ~ G C A T T A T A T T G C G C }
3 GCATTATATTGCGCGTACGGCGC
    GCATTATATTGCGCGTACGGCGC
    \longmapsto_Superstring - - 
```


Shortest common superstring: greedy

Another setup for Greedy-SCS: assemble all substrings of length 6 from string a_long_long_long_time. $l=3$.

```
    ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
5 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
5 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
5 \text { ng_time long_ti g_long_ ng_lon a_long long_l ong_lo}
5 \text { ng_time ong_lon long_ti g_long_ a_long long_l}
5 ong_lon long_time g_long_ a_long long_l
5 long_lon long_time g_long_ a_long
5 long_lon g_long_time a_long
5 long_long_time a_long
4 a_long_long_time
    a_long_long_time
    I only got back: a_long_long_time
(missing a _long)
What happened?
```


Shortest common superstring: greedy

The overlap graph for that scenario ($l=3$):

Shortest common superstring: greedy

The overlap graph for that scenario ($l=3$):

Shortest common superstring: greedy

The overlap graph for that scenario ($l=3$):

Shortest common superstring: greedy

Same example, but increased the substring length from 6 to 8

```
    long_lon ng_long_ _long_lo g_long_t ong_long g_long_l ong_time a_long_l _long_ti long_tim
7 long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l__long_ti
7 _long_time long_lon ng_long_ _long_lo g_long_t ong_long g_long_l a_long_l
7 _long_time a_long_lo long_lon ng_long_ g_long_t ong_long g_long_l
7 _long_time ong_long_ a_long_lo long_lon g_long_t g_long_l
7 g_long_time ong_long_ a_long_lo long_lon g_long_l
7 g_long_time ong_long_ a_long_lon g_long_l
7 g_long_time ong_long_l a_long_lon
7 g_long_time a_long_long_l
3 a_long_long_long_time
    a_long_long_long_time
```

Got the whole thing: a_long_long_long_time

Shortest common superstring: greedy

Why are substrings of length 8 long enough for Greedy-SCS to figure out there are 3 copies of long?

One length-8 substring spans all three longs

Repeats

Repeats often foil assembly. They certainly foil SCS, with its "shortest" criterion!
Reads might be too short to "resolve" repetitive sequences. This is why sequencing vendors try to increase read length.
Algorithms that don't pay attention to repeats (like our greedy SCS algorithm) might collapse them

The human genome is $\sim 50 \%$ repetitive!

Repeats

Basic principle: repeats foil assembly
Another example using Greedy-SCS:
Input: it_was_the_best_of_times_it_was_the_worst_of_times

Extract every substring of length k, then run Greedy-SCS.
Do this for various l (min overlap length) and k.
$l, k \quad$ output
3,5 the_worst_of_times_it_was_the_best_o
3,7 s_the_worst_of_times_it_was_the_best_of_t
3, 10 _was_the_best_of_times_it_was_the_worst_of_tim
3, 13 it_was_the_best_of_times_it_was_the_worst_of_times

Repeats

Basic principle: repeats foil assembly

Longer and longer substrings allow us to "anchor" more of the repeat to its non-repetitive context:

```
swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells
```

Often we can "walk in" from both sides. When we meet in the middle, the repeat is resolved:

Repeats

Basic principle: repeats foil assembly

Yet another example using Greedy-SCS:

Input: swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells
l, k read length output
$3,7 \quad$ swinging_and_the_ringing_of_the_bells_bells
3,13 swinging_and_the_ringing_of_the_bells_bells_bells
3,19 swinging_and_the_ringing_of_the_bells_bells_bells_bells_b
3,25 swinging_and_the_ringing_of_the_bells_bells_bells_bells_bells

longer and longer substrings allow
us to "reach" further into the repeat

Repeats

Picture the portion of the overlap graph involving repeat A

Assume A is longer than read length

Even if we avoid collapsing copies of A, we can't know which paths in correspond to which paths out

Shortest common superstring: post mortem

SCS is flawed as a way of formulating the assembly problem
No tractable way to find optimal SCS

Had to use Greedy-SCS. Answers might be too long.

SCS spuriously collapses repetitive sequences

Answers might be too short, by a lot!

Need formulations that are (a) tractable, and (b) handle repeats as gracefully as possible

Remember: repeats foil assembly no matter the algorithm. This is a property of read length and repetitiveness of the genome.

Taxonomy of assembly approaches

Search for most parsimonious explanation of the reads (shortest superstring)

Exact solutions are intractable (e.g. TSP), but a greedy approximation is possible

Any solution will collapse repeats spuriously
Search for "maximum likelihood" explanation of the reads; i.e. force solution to be consistent with uniform coverage

Boža, Vladimír, Broňa Brejová, and Tomáš Vinař. "GAML: Genome Assembly by Maximum Likelihood."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2014. 122-134.
Medvedev, Paul, and Michael Brudno. "Maximum likelihood genome assembly." Journal of computational Biology 16.8 (2009): 1101-1116.
Give up on unresolvable repeats and use a tractable algorithm to assemble the resolvable portions. This is what real tools do.

Real-world assembly methods

OLC: Overlap-Layout-Consensus assembly
DBG: De Bruijn graph assembly

Both handle unresolvable repeats by essentially leaving them out
Unresolvable repeats break the assembly into fragments
Fragments are contigs (short for contiguous)

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Overlap Layout Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Pick most likely nucleotide sequence for each contig

Finding overlaps

Can we be less naive than this?

Say $l=3$

	Look for this in Y, going right-to-left		
	\downarrow		
X:	CTCTAGGCC	X :	CTCTAGGCC
Y :	TAGGCCCTC	Y :	TAGGCCCTC

Extend to left; in this case, we confirm that a length-6 prefix of Y matches a suffix of X
$X: \quad$ CTCTAGGCC
$Y: \quad$ TAGGCCCTC

We're doing this for every pair of input strings

Finding overlaps

Can we use suffix trees for overlapping?
Problem: Given a collection of strings S, for each string x in S find all overlaps involving a prefix of x and a suffix of another string y

Hint: Build a generalized suffix tree of the strings in S

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ "GACATA", "ATAGAC" $\} \quad$ GACATA\$0ATAGAC\$1

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ " $G A C A T A ", " A T A G A C "\} \quad G A C A T A \$ 0 A T A G A C \$ 1 ~$

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ "GACATA", "ATAGAC" $\} \quad$ GACATA $\$_{0} A T A G A C \$ 1$

Finding overlaps with suffix tree

Generalized suffix tree for $\{$ "GACATA", "ATAGAC" $\} \quad$ GACATA\$ ${ }_{0} A T A G A C \$ 1$

Time to build generalized suffix tree: $O(N)$
... to walk down red paths:
O(N)
Bounds don't include n^{2}, but a is $\mathrm{O}\left(n^{2}\right)$ in worst case
... to report all overlaps (green): O(a)
Overall:
$\mathrm{O}(N+a)$

Finding overlaps

What if we want to allow mismatches and gaps in the overlap?

X: CTCGGCCCTAGG ||| |||||
I.e. How do we find the best alignment of a

Y: GGCTCTAGGCCC suffix of X to a prefix of Y ?

Dynamic programming
But we must frame the problem such that only backtraces involving a suffix of X and a prefix of Y are allowed

Recall: Semi-global Alignment

Semi-global (glocal): Gaps at the beginning or end of \mathbf{x} or \mathbf{y} are free. Useful when one one string is significantly shorter than the other or we want to find an overlap between the suffix of one string and a prefix of the other
sometimes called "cost-free-ends" or "fitting" alignment
x

This variant is useful for our purposes here

Finding overlaps with dynamic programming

Say there are n strings of length d, total length $N=n d$, and a is total number of pairs with an overlap

Number of overlaps to try:
Size of each dynamic programming matrix: $\quad \mathrm{O}\left(d^{2}\right)$
Overall:

$$
\mathrm{O}\left(n^{2}\right)
$$

$\mathrm{O}\left(n^{2} d^{2}\right)=\mathrm{O}\left(N^{2}\right)$

Contrast $\mathrm{O}\left(N^{2}\right)$ with suffix tree: $\mathrm{O}(N+a)$, but where a is worst-case $\mathrm{O}\left(n^{2}\right)$
But dynamic programming is more flexible, allowing mismatches and gaps
In practice, overlappers are between the two, using indexes to filter away non-overlapping pairs, then dynamic programming for the remainder

Finding overlaps

Overlapping is typically the slowest part of assembly
Consider a second-generation sequencing dataset with hundreds of millions or billions of reads!

Approaches from alignment unit can be adapted to finding overlaps
We saw adaptations of naive exact matching, suffix-treeassisted exact matching, and dynamic programming

Could also have adapted efficient exact matching, approximate string matching, co-traversal, ...

Finding overlaps

Celera Assembler's overlapper is probably the best documented:
Inverted substring indexes built on batches of reads
Only look for overlaps between reads that share one or more substrings of some length
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA\#Overlapper

Inverted substring index is a "k-mer" lookup table. It maps every short fixed-length substring to the set of reads where it occurs.

Utility of an inverted index

\square	$1,5,6,17$
\square	$1,6,24$
	$1,6,22$
.	
\cdot	

Only reads sharing at least 1 indexed substring can possibly have an exact overlap. Checking only these pairs greatly reduces the burden of detecting overlaps. However, overlapping can still be one of the slowest steps in an assembly.

Overlap Layout Consensus

Layout

The overlap graph is big and messy. Contigs don't "pop out" at us.
Below: part of the overlap graph for
to_every_thing_turn_turn_turn_there_is_a_season
$l=4, k=7$

Layout

Picture gets clearer after removing some transitively-inferrible edges

Layout

Remove transitively-inferrible edges, starting with edges that skip one node:

Before:

Layout

Remove transitively-inferrible edges, starting with edges that skip one node:

After:

These edges are between reads whose overlaps completely encompass the center node.

Layout

Remove transitively-inferrible edges, starting with edges that skip one or two nodes:

After:

Even simpler

Layout

Emit contigs corresponding to the non-branching stretches

Layout

In practice, layout step also has to deal with spurious subgraphs, e.g. because of sequencing error

Mismatch could be due to sequencing error or repeat. Since the path through \mathbf{b} ends abruptly we might conclude it's an error and prune \mathbf{b}.

Modern assemblers are full of such "heuristics" - wisdom gained from running them on a lot of data.

Overlap Layout Consensus

Consensus

At each position, ask: what nucleotide (and/or gap) is here?
Complications: (a) sequencing error, (b) ploidy
Say the true genotype is AG, but we have a high sequencing error rate and only about 6 reads covering the position.

Overlap Layout Consensus

Build overlap graph

Bundle stretches of the overlap graph into contigs

Consensus Pick most likely nucleotide sequence for each contig

What's the main drawback of OLC?
Building overlap graph is slow. We saw $\mathrm{O}(N+a)$ and $\mathrm{O}\left(N^{2}\right)$ approaches
$2^{\text {nd-generation sequencing datasets are } \sim 100 \text { s of millions or billions of }}$ reads, hundreds of billions of nucleotides total

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

Scaffolding with mate pair information

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

Seaffoloing

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called
 sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly
Alternative 2: de Bruijn graph (DBG) assembly

