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Scalability at the forefront

I've spoken a lot in this class about the need tor scalable
solutions, but how big of a problem is it”

Take (one of) the simplest problems you might imagine:

A collection of sequencing reads S and
a paramater K

Find: The multiplicity of every length-k substring
(k-mer) that appears in S

This is the k-mer counting problem



K-mer counting

A large number of recent papers tackle this (or a closely
related) problem:

Tallymer, Jellyfish, DSK, KMC, BFCounter,
sclurtle, KAnalyze, khmer, ... and many more



HOW might we count K-mers

A naive approach;

S ATACAGGACGTTC

While S is non-empty:

Draw a string s, from S TAC

For every k-mer, K In s:
counts[k] += 1



What's wrong with this approach?

Speed & Memory usage

Routinely encounter datasets with 10 - 100 x 10° nucleotides
Just hashing the k-mers and resolving collisions takes time

On the order of 1-10 x 1092 or more distinct k-mers

It we used a 4-byte unsigned int to store the count, we'd
be using 40GB just for counts

But, hashes have overhead (load factor < 1), and often
need to store the key as well as the value

Easily get to > 100GB of RAM



Smart, parallel hashing actually pretty good

f we put some thought and engineering effort into the
nashing approach, it can actually do pretty well. This
IS the insight behind the Jellyfish program.

Massively parallel, lock-free, k-mer counting
— most parallel accesses won't cause a collision

Efficient storage of hash table values

— bit-packed data structure
— small counter with multiple entries for
high-count k-mers

Efficient storage of keys

— f: Uk = Uk, and let hash(k) = f(k) mod M

— Can reconstruct k from pos in hash table (quotient) and
remainder.



Smart, parallel hashing actually pretty good

Efficient storage of keys

— f: Uk = Ux, and let hash(k) = f(k) mod M
— recall: we can represent f(k) as f(k) = gM + r

— Can reconstruct k from pos in hash table (quotient, g) and
remainder, r. The quotient is simply encoded as the
position.

— Extra work must be done since collisions can occur

— For a general coverage of this idea, see the Quotient Filter
data structure by Bender et al. (2011)

Squeakr: An Exact and Approximate k-mer

Counting System
Prashant Pandey ™, Michael A Bender, Rob Johnson, Rob Patro  Author Notes

Bioinformatics, btx636, https://doi.org/10.1093/bioinformatics/btx636
Published: 09 October 2017 Article history v

"Don't thrash: how to cache your hash on flash" (PDF). Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems (HotStorage'11). Retrieved 21 July 2012.


http://static.usenix.org/events/hotstorage11/tech/final_files/Bender.pdf
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Even bigger data

For very large datasets, even this approach may use
too much memory. How can we do better?



Even bigger data

For very large datasets, even this approach may use
too much memory. How can we do better?

Solve a different (but closely-related) problem

What it we just want to know “it" a k-mer is present”?

What if we just wanted “approximate” counts”



Bloom Fllters

Originally designed to answer probabilistic membership
gueries:

s element e In my set 57?
If yes, always say yes

If no, say no with large probability

False positives can happen; talse negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {ho, ..., hk-1}

To insert e, set Alhi(e)] = 1forO<i<Kk
To query for e, check if Alhi(e)] = 1for0 <i <Kk
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Bloom Filters

f hash functions are good and sufticiently
independent, then the probability of false positives is
ow and controllable.

How low?
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False Positives

Let g be the fraction of the m-bits which remain as 0O after n
iInsertions.

The probability that a randomly chosen bitis 1 is 1-Q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-Q)k

We can derive a formula for the expected value of g,
for a filter of m bits, after n insertions with k different hash
functions:

Elg] = (1 - 1/m)x

*analysis of Mitzenmacher and Upfal



False Positives

Mitzenmacher & Unfal used the Azuma-Hoeffding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

A \?

Pr(lq — Blg)l > =) < 2exp(~25)

That is, the random realizations of g are highly
concentrated around E[qg], which yields a false positive
prob of:

1 kn\ ¥ .
ZPT )(1—1)" (1E[C]])k(1{1m} ) ~ (1 — e )k

*analysis of Mitzenmacher and Upfal



False Positives
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This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k=(m/n)In2 = 2k=~0.6185 mn

We can then compute the false positive prob
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False Positives
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This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

@ (m/n) In 2 = 2+~ 0.6185 mn

We can then compute the false positive prob

given an expected

P — (1 —e (W IHQ)%)(% 2 = # elems

Inp = —E(ln 2)° and a desired
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Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be usetul for representing
a De Bruijn graph?



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be usetul for representing
a De Bruijn graph?

Say we have a bloom ftilter B, for all of the k-mers in our
data set, and say | give you one k-mer that Is truly present.

We now have a “navigational” representation of the
De Bruijn graph (can return the set of neighbors of a
node, but not select/iterate over nodes); why?



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be usetul for representing
a De Bruijn graph?

T
L ~

A given (k-1)-mer can only have 2*|2| neighbors;
2| incoming and |>| outgoing neighbors — for
genomes |2| = 4

O navigate in the De Bruijn graph, we can simply
query all possible successors, and see which are
actually present.



Bloom Filters & De Bruijn Graphs

But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless datastructure
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce
the concept of “cascading” Bloom filters



|dea of Chkhi and Rizk

Assume we want to represent specific set TO of k-mers
with a Bloom filter B1

Key observation: iIn assembly, not all k-mers can be queried, only
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true
k-mers) is much smaller than the set of all false positives and
can be stored explicitly

Storing B1 and T1 is much more space efficient that other

exact methods for storing TO. Membership of win TO is tested
by first querying B1, and if w € B1, check that it is notin T1.

* slide courtesy of Salikhov, Sacomoto & Kucherov



Bloom filter
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/ T false positives of B, \

N /

» Represent T, by Bloom filter B,

* slide courtesy of Salikhov, Sacomoto & Kucherov



/ T0 false positives of B, \

N /

» Represent T, by Bloom filter B,

» Compute T, (‘critical false positives’) and represent it e.g.
by a hash table

* slide courtesy of Salikhov, Sacomoto & Kucherov



false positives of B, \

N /

» Represent T, by Bloom filter B,

» Compute T, (‘critical false positives’) and represent it e.g.
by a hash table

» Result (example): 13.2 bits/node for k=27 (of which 11.1
bits for B, and 2.1 bits for T,)

* slide courtesy of Salikhov, Sacomoto & Kucherov



Improving on Chikhi and Rizk’s method

» Main idea: iteratively apply the same construction to T i.e.
encode T, by a Bloom filter B, and set of ‘false-false
positives’ T,, then apply this to T, etc.

» = cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto & Kucherov



* slide courtesy of Salikhov, Sacomoto & Kucherov



/ TO N false positives of B, \
p—
T T,
)

N ‘ J

» further encode T, via a Bloom filter B, and set T, where
T,& T, is the set of k-mers stored in B, by mistake
(‘false? positives’)

* slide courtesy of Salikhov, Sacomoto & Kucherov



7

N

false positives of B, \

/

» further encode T, via a Bloom filter B, and set T, where
T,& T, is the set of k-mers stored in B, by mistake

‘false? positives’
»

» iterate the construction on T,

» we obtain a sequence of sets T, T,,T,, T3, ... encode by
Bloom filters B,, B,, B;, B, ... respectively

» T,2T,2T,2... ,T,2T,2T,2

* slide courtesy of Salikhov, Sacomoto & Kucherov



false positives of B, \

N /

Lemma [correctness]: For a k-mer w, consider the smallest i such
that w&B,, . Then wE T, if i is odd and waT, if i is even.

if w&B, then weT

if we B, but w&B, then wE T,

if weB,, wEB,, but wdB, then weT,
etc.

vV Vv V9V Vv

* slide courtesy of Salikhov, Sacomoto & Kucherov



Assuming infinite number of filters

Let N=|T,| and r=m/n. is the same for every B.. Then the
total size is

N + 6rNcr + rNc + 6rNc2 + rNc2 +... =N(1+6¢") -

1-c

r

|B4] B, B3] Byl |Bs|

The minimum is achieved for r=5.464, which yields the
memory consumption of 8.45 bits/node

* slide courtesy of Salikhov, Sacomoto & Kucherov



Infinity ditficult to deal with ;)

- In practice we will store only a small finite number of filters
B,, B,,..., B;together with the set T, stored explicitely

- =1 - Chkhi&Rizk’s method

- The estimation should be adjusted, optimal value of r has to be
updated, example for t=4

k | optimal r | bits per k-mer

16 | b5.776737 8.005654
32 | 6.048557 8.664086
64 | 6.398529 8.824496
128 | 6.819496 9.045435

Table: Estimations for t=4. Optimal r and
corresponding memory consumption

* slide courtesy of Salikhov, Sacomoto & Kucherov



Compared to Chikhi&Rizk’s method

k “Optimal” (infinite) Cascading Bloom Filter | Data structure
Cascading Bloom Filter with ¢t = 4 of Chikhi & Rizk
16 8.45 8.555654 12.0785
32 8.45 8.664086 13.5185
64 8.45 8.824496 14.9585
128 8.45 9.045435 16.3985

Table: Space (bits/node) compared to Chikhi&Rizk
for t=4 and different values of k.

* slide courtesy of Salikhov, Sacomoto & Kucherov



We can cut down a bit more ...

- Rather than using the same r for all filters B,, B,,..., we
can use different properly chosen coefficients r,r, ...

- This allows saving another 0.2 — 0.4 bits/k-mer

* slide courtesy of Salikhov, Sacomoto & Kucherov



Experiments I:

E.Coli, varying k

- 10M E.Coli reads of 100bp
- 3 versions compared: 1 Bloom (=Chikhi&Rizk), 2

Bloom (f=2) and 4 Bloom ({=4)
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* slide courtesy of Salikhov, Sacomoto & Kucherov




Experiments II: Human dataset

- 564M Human reads of 100bp (~17X coverage)

Method 1 Bloom 2 Bloom 4 Bloom
Construction time (s) 40160.7 43362.8 44300.7
Traversal time (s) 46596.5 35909.3 34177.2
r (bits) 11.10 8.10 6.56
By =3250.95 | By =2372.51 | By =1921.20
Bloom filters size (MB) Ba = 292.65 B2 = 496.92
B3 = 83.39
By = 21.57
False positive table size (MB) T; = 545.94 T> = 370.96 Ty = 24.07
Total size (MB) 3796.89 2524.12 2547.15
Size (bits/k-mer) 12.96 10.37 8.70

* slide courtesy of Salikhov, Sacomoto & Kucherov




Experiments I (cont)
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* slide courtesy of Salikhov, Sacomoto & Kucherov



Efficiently enumerating ckFP

Algorithm 1 Constant-memory enumeration of critical
false positives

1: Input: The set S of all nodes in the graph, the Bloom
filter constructed from &, the maximum number M
of elements in each partition (determines memory
usage)

2: Output: The set cFP

3: Store on disk the set P of extensions of S for which
the Bloom filter answers yes

4: Free the Bloom filter from memory
5: Do < P
6: i «— 0
7: while end of S is not reached do
8 Pi <~ @
9: while |P;| < Mdo
10 P; « P;U{next k-mer in S}
11:  for each k-mer m in D; do
12: if m ¢ P; then
13: Dit1 < Djy1 U {m}

14:  Delete D;, P;
15: I <—i+1
16: cFP <« D;

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22


https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Bloom filters & De Bruijn Graphs

S0, we can use Bloom filters to help efficiently represent
De Bruijn Graphs.

Other variants (e.g. counting Bloom filters (Melsted &
Pritchard, BMC Bioinformatics, 2011)) allow us to count
approximate occurrences of each k-mer, allowing us to
sidestep huge storage requirements for k-mers
occurring exactly once.

Such an idea is implemented in BFCounter, and brings
us back, full-circle, to the problem of counting k-mers!



Probabilistic Data Structures & k-mer Counting

Some recent methods apply Bloom filters or related
ideas to the problem of k-mer counting. One such

method Is knmer, which uses the count-min sketch

data structure.



Probabilistic Data Structures & k-mer Counting

Instead of a an array of m-bits, store a 2D, array, CM, of

size d x w — d Is called the depth of the array, and there
are d independent hash tunctions, w is called with width
of the array. This is an O(wd) data structure.

= +Ct

hl / = +Ct

(i=—r—
hd \ T +Ct

= +Ct




Probabilistic Data Structures & k-mer Counting

Like Bloom filters, 2 mains operations:

Update (k, v) — for each entry CM[i, hi(k)], where 0 < i <
d, iIncrement the value by v.

Query (k) — compute v = min CM[i, hi(k)]

0 <i<ad
Both are O(d) operations
T +Ct
|

h _

C El <//> +Ct
hd \ — +
= +Ct
\\
- +Ct




Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won't prove bounds)

Let &i be the result returned by Query(i). We have that:

a; S Ciz (always)
1
a; < a; +€llall, (with probability at least 5)
where,



Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won't prove bounds)

Let &i be the result returned by Query(i). We have that:

a; < a; (always)

a; < a; +€ll|all; (with probability at least —)

base of nat. log



The Count-Min Sketch for k-mer counting
This approach is used in the k-mer counting software khmer
No exact data structure is maintained, just a CMS

This allows for answering approximate count queries
efficiently.

Authors compared to a large number of other k-mer
counters under several different metrics.
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Querying for random k-mers
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Average miscount

Miscount & FP rate; changing e and o
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*from Zhang et al. PLoS ONE, 2014



Average miscount (percent)
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Other uses of this approach

Khmer has been used successfully for other tasks e.g.
digital normalization:

diginorm algo:

for read in dataset:

if |estimated_coverage|(read) < C: -
et o v\_/medman kK-mer abundance of
else: kK-mers in the read
discard(read)
memory FP rate retained reads retained reads % true k-mers missing total k-mers
before diginorm - 5,000,000 100.0% 170 416 m
2400 MB 0.0% 1,656,518 33.0% 172 28.1m
240 MB 2.8% 1,655,988 33.0% 172 28.1m
120 MB 18.0% 1,652,273 33.0% 172 28.1m
60 MB 59.1% 1,633,182 32.0% 172 279 m
40 MB 83.2% 1,602,437 32.0% 172 276 m
20 MB 98.8% 1,460,936 29.0% 172 257 m
10 MB 100.0% 1,076,958 21.0% 185 209 m

The results of digitally normalizing a 5 m read E£. co/i data set (1.4 GB) to C=20 with k=20 under several memory usage/false positive rates. The
false positive rate (column 1) is empirically determined. We measured reads remaining, number of “true’’ k-mers missing from the data at each
step, and the number of total k-mers remaining. Note: at high false positive rates, reads are erroneously removed due to inflation of k-mer counts.
doi:10.1371/journal.pone.0101271.t004

*from Zhang et al. PLoS ONE, 2014



Work along these lines at SBU

A General-Purpose Counting Filter: Making Every Bit
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The Counting Quotient Filter

Compact, lossless representation of multiset h(S)

h:U —{0,...,2r-1} is a hash function, S is multiset,
U is the universe from which S Is drawn

X € S, h(x) Is a p-bit number.

Q is an array of 24d r-bit slots

he quotient filter divides h(x) into g(h(x)), r(h(x));
the first g and remaining r bits of h(x) where p=qg+r

Put r(h(x)) into Q[a(h(x))]



The Counting Quotient Filter

In reality, a bit more complicated because collisions
can occur. What if Q[a(h(x))] is occupied by some
other element (as the result of an earlier collision)?

0 1 2 3 4 5 6 7

occupieds | 0 0 1 0 0 0 1

runends 0 0 0 1 0 1
remainders h1(d)|h1(e) ha(f)
< 2‘1 >

Figure 1: A simple rank-and-select-based quotient filter. The colors
are used to group slots that belong to the same run, along with the
runends bit that marks the end of that run and the occupieds bit that
indicates the home slot for remainders in that run.

Move along until you find the next free slot.
Metadata bits allow us to track “runs™ and skip
elements other than the key of interest efticiently.




The Counting Quotient Filter

How to count?

Rather than having a separate array for counting (a
la the counting Bloom filter), use the slots of Q
directly to encode either r(h(x)), or counts!

The CQF uses a somewhat complex encoding
scheme (base 2r-2), but this allows arbitrary
variable length counters.

This is a huge win for highly-skewed datasets with
non-uniform counts (like most of those we
encoutner).



The Counting Quotient Filter, results
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Figure 4: Number of bits per element for the RSQF, QF, BF, and
CFE. The RSQF requires less space than the CF amd less space than
the BF for any false-positive rate less than 1/64. (Higher is better)



The Counting Quotient Filter, results

Data Structure CQF CBF
Zipfian random inserts per sec 13.43 0.27
Zipfian successful lookups per sec | 19.77 2.15
Uniform random lookups per sec | 43.68 1.93
Bits per element 11.71 | 337.584

(b) In-memory Zipfian performance (in millions
of operations per second).

—=— CQF (worst case)
—8— CQF (best case)
10° | —a— CBF (worst case)
—a&— CBF (best case)
\ o SBF (worst case)
10° - i @ SBF (best case) | |

Size of the data structure in bits

n =M = 16000000 § =27°

10* 1 | J

0 5-10° 1-107 1.5-107
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Figure 5: Space comparison of CQF, SBF, and CBF as a function of
the number of distinct items. All data structures are built to support
upton = 1.6x 10" insertions with a false-positive rate of § = 2~°.



The Counting Quotient Filter, results
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Figure 8: In-memory performance of the CQF and CBF on data with a Zipfian distribution. We don’t include the CF in these benchmarks
because the CF fails on a Zipfian input distribution. The load factor does not go to 95% in these experiments because load factor is defined
in terms of the number of distinct items inserted in the data structure, which grows very slowly in skewed data sets. (Higher is better.)
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Figure 9: In-memory performance of the counting quotient filter with real-world data sets and with multiple threads, and percent slot usage
with skewed distribution.



Squeakr, applying the CQF to k-mer counting

Counting Memory

Table 1. datasets used in the experiments

Dataset File size #Files # k-merinstances #Distinct k-mers
Evesca 3.3 11 4134078 256 632436 468
G.gallus 25.0 15 25 337974 831 2727 529 829
M.balbisiana 46.0 2 41063145194 965 691 662
H.sapiens 1 67.0 6 62 837 392 588 6 353 512 803

H.sapiens 2 99.0 48 98 892 620 173 6 634 382 141

Note: The file size is in GB. All the datasets are compressed with gzip
compression.

Table 2. Gigabytes of RAM used by KMC2, Squeakr, Squeakr-exact,
and Jellyfish2 for various datasets for in-memory experiments for

k=28

dataset KMC2 Squeakr Squeakr-exact Jellyfish2
Evesca 8.3 4.8 9.3 8.3
G.gallus 32.8 13.0 28.8 31.7
M.balbisiana 48.3 11.1 14.2 16.3
H.sapiens 1 71.4 22.1 51.5 61.8

H.sapiens 2 107.4 30.8 60.1 61.8




Squeakr, applying the CQ

Table 3. k-mer counting performance of KMC2, Squeakr, Squeakr-exact, and Jellyfish2 on different datasets for k=28

Counting performance

- to k-mer counting

System Fvesca G.gallus M.balbisiana H.sapiens 1 H.sapiens 2
8 16 8 16 8 16 8 16 8 16

KMC2 91.68 67.76 412.19 266.546 721.43 607.78 1420.45 848.79 1839.75 1247.71
Squeakr 116.56 64.44 739.49 412.82 1159.65 662.53 1931.97 1052.73 3275.20 1661.77
Squeakr-exact 146.56 80.58 966.27 501.77 1417.48 763.88 2928.06 1667.98 5016.46 2529.46
Jellyfish2 257.13 172.55 1491.25 851.05 1444.16 886.12 4173.3 2272.27 6281.94 3862.82
Table 4. k-mer counting performance of KMC2, Squeakr, and Jellyfish2 on different datasets for k=55
System Fvesca G.gallus M.balbisiana H.sapiens 1 H.sapiens 2

8 16 8 16 8 16 8 16 8 16
KMC2 233.74 123.87 979.20 1117.35 1341.01 1376.51 3525.41 2627.82 4409.82 3694.85
Squeakr 138.32 75.48 790.83 396.36 1188.15 847.83 2135.71 1367.56 3320.67 2162.97
Jellyfish2 422.220 294.93 1566.79 899.74 2271.33 1189.01 3716.76 2264.70 6214.81 3961.53




Squeakr, applying the CQF to k-mer counting

Query performance

Table 5. Random query performance of KMC2, Squeakr, Squeakr-
exact, and Jellyfish2 on two different datasets for k=28

System G.gallus M.balbisiana

Existing  Non-existing  Existing  Non-existing

KMC2 1495.82 470.14 866.93 443.74
Squeakr 303.68 52.45 269.24 40.73
Squeakr-exact 389.58 58.46 280.54 42.67
Jellyfish2 884.17 978.57 890.57 985.30

Table 6. de Bruijn graph query performance on different datasets

System Dataset Max pathlen Running times

Counting Query Total

KMC2  G.gallus 122 266 23097 23363
Squeakr  G.gallus 92 412 3415 3827
KMC2  M.balbisiana 123 607 6817 7424
Squeakr M.balbisiana 123 662 1471 2133

Note: The counting time is calculated using 16 threads. The query time is
calculated using a single thread. Time is in seconds. We excluded Jellyfish2
from this benchmark because Jellyfish2 performs slowly compared to KMC2
and Squeakr for both counting and query (random query and existing k-mer

query).



Take-nome message

The sheer scale of the data we have to deal with makes
even the most simple tasks (e.g. counting k-mers or storing
and traversing a De Bruin graph) rite with opportunities
for the development and application of interesting
and novel data structures and algorithms!



