
CSE 549: Efficiently Dealing with 
k-mers and De Bruijn Graphs



Scalability at the forefront
I’ve spoken a lot in this class about the need for scalable 
solutions, but how big of a problem is it?

Take (one of) the simplest problems you might imagine:

Given: A collection of sequencing reads S and 
           a paramater k

Find: The multiplicity of every length-k substring    
         (k-mer) that appears in S

This is the k-mer counting problem



k-mer counting

A large number of recent papers tackle this (or a closely 
related) problem:

Tallymer, Jellyfish, DSK, KMC, BFCounter, 
scTurtle, KAnalyze, khmer, … and many more



How might we count k-mers
A naive approach:

S ATACAGGACGTTC

While S is non-empty:
Draw a string s, from S
For every k-mer, k in s:

counts[k] += 1

ATA

TAC



What’s wrong with this approach?
Speed & Memory usage
Routinely encounter datasets with 10 - 100 x 109 nucleotides

On the order of 1-10 x 109 or more distinct k-mers

If we used a 4-byte unsigned int to store the count, we’d 
be using 40GB just for counts

But, hashes have overhead (load factor < 1), and often  
need to store the key as well as the value

Easily get to > 100GB of RAM

Just hashing the k-mers and resolving collisions takes time



Smart, parallel hashing actually pretty good
If we put some thought and engineering effort into the  
hashing approach, it can actually do pretty well.  This  
is the insight behind the Jellyfish program.

Massively parallel, lock-free, k-mer counting 
— most parallel accesses won’t cause a collision 

Efficient storage of hash table values
— bit-packed data structure
— small counter with multiple entries for  

      high-count k-mers
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M
— Can reconstruct k from pos in hash table (quotient) and   

   remainder.



Smart, parallel hashing actually pretty good
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M

— Can reconstruct k from pos in hash table (quotient, q) and   
   remainder, r. The quotient is simply encoded as the  

 position.

— recall: we can represent f(k) as f(k) = qM + r

— Extra work must be done since collisions can occur

— For a general coverage of this idea, see the Quotient Filter  
data structure by Bender et al. (2011)

"Don't thrash: how to cache your hash on flash" (PDF). Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems (HotStorage'11). Retrieved 21 July 2012.

http://static.usenix.org/events/hotstorage11/tech/final_files/Bender.pdf


Memory usage of Jellyfish

suffix array-based 
approach



Runtime of Jellyfish



System utilization of Jellyfish



Even bigger data
For very large datasets, even this approach may use 
too much memory. How can we do better?



Even bigger data
For very large datasets, even this approach may use 
too much memory. How can we do better?

Solve a different (but closely-related) problem

What if we just wanted “approximate” counts?

What if we just want to know “if” a k-mer is present?



Bloom Filters
Originally designed to answer probabilistic membership 
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits 
Use k different hash functions, {h0, …, hk-1} 
To insert e, set A[hi(e)] = 1 for 0 < i < k

To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007



Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently 
independent, then the probability of false positives is 
low and controllable.

How low?



False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n 
insertions.

The probability that a randomly chosen bit is 1 is 1-q. 

But we need a 1 in the position returned by k different hash 
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q, 
for a filter of m bits, after n insertions with k different hash 
functions:

E[q] = (1 - 1/m)kn 



False Positives

*analysis of Mitzenmacher and Upfal

Mitzenmacher & Unfal used the Azuma-Hoeffding 
inequaltiy to prove (without assuming the probability of 
setting each bit is independent) that 
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This lets us choose optimal values to achieve a target false 
positive rate.  For example, assume m & n are given. Then we 
can derive the optimal k

k = (m/n) ln 2  ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob
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This lets us choose optimal values to achieve a target false 
positive rate.  For example, assume m & n are given. Then we 
can derive the optimal k

k = (m/n) ln 2  ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob
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given an expected 
# elems

and a desired 
false positive rate

we can compute  
the optimal size and  

# of has functions



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing 
a De Bruijn graph?



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing 
a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our 
data set, and say I give you one k-mer that is truly present.

We now have a “navigational” representation of the  
De Bruijn graph (can return the set of neighbors of a 
node, but not select/iterate over nodes); why?



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing 
a De Bruijn graph?

A given (k-1)-mer can only have 2*|Σ| neighbors; 
|Σ| incoming and |Σ| outgoing neighbors — for 

genomes |Σ| = 4

To navigate in the De Bruijn graph, we can simply 
query all possible successors, and see which are 

actually present.



 Bloom Filters & De Bruijn Graphs
But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless datastructure 
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce 
the concept of “cascading” Bloom filters 



Idea of Chkhi and Rizk

* slide courtesy of Salikhov, Sacomoto & Kucherov 

Assume we want to represent specific set T0 of k-mers 
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only 
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true 
k-mers) is much smaller than the set of all false positives and 
can be stored explicitly

Storing B1 and T1 is much more space efficient that other 
exact methods for storing T0. Membership of w in T0 is tested 
by first querying B1, and if w ∈ B1, check that it is not in T1.





false positives of B1 T0 

�  Represent T0 by Bloom filter B1 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  Represent T0 by Bloom filter B1 

�  Compute T1 (‘critical false positives’) and represent it e.g. 
by a hash table 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  Represent T0 by Bloom filter B1 

�  Compute T1 (‘critical false positives’) and represent it e.g. 
by a hash table 

�  Result (example): 13.2 bits/node for k=27 (of which 11.1 
bits for B1 and 2.1 bits for T1) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Improving on Chikhi and Rizk’s method 

�  Main idea: iteratively apply the same construction to T1 i.e. 
encode T1 by a Bloom filter B2 and set of ‘false-false 
positives’ T2, then apply this to T2 etc.  

�  ☞ cascading Bloom filters 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  further encode T1 via a Bloom filter B2 and set T2, where  
T2⊆T0 is the set of k-mers stored in B2 by mistake 
(‘false2 positives’) 

T2 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



false positives of B1 T0 

T1 

�  further encode T1 via a Bloom filter B2 and set T2, where  
T2⊆T0 is the set of k-mers stored in B2 by mistake 
(‘false2 positives’) 

�  iterate the construction on T2  
�  we obtain a sequence of sets T0, T1, T2, T3, … encode by 

Bloom filters B1, B2, B3, B4, … respectively 
�  T0⊇T2⊇T4⊇… , T1⊇T3⊇T5⊇ 

T2 T3 T4 T5 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Correctness 

Lemma [correctness]: For a k-mer w, consider the smallest i such 
that w∉Bi+1. Then w∈T0 if i is odd and w∉T0 if i is even.  

�  if w∉B1 then w∉T0 
�  if w∈B1, but w∉B2 then w∈T0  
�  if w∈B1, w∈B2, but w∉B3 then w∉T0  
�  etc. 

false positives of B1 T0 

T1 
T2 T3 T4 T5 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Assuming infinite number of filters 

Let N=|T0| and r=mi/ni is the same for every Bi.   Then the 
total size is 

rN + 6rNcr + rNcr + 6rNc2r + rNc2r +... =N(1+6cr) 

 

r
1− cr

|B1| |B2| |B3| |B4| |B5| 

The minimum is achieved for r=5.464, which yields the 
memory consumption of 8.45 bits/node 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Infinity difficult to deal with ;) 

-  In practice we will store only a small finite number of filters  
B1, B2,…, Bt together with the set Tt stored explicitely 

-  t=1 ➟ Chkhi&Rizk’s method 
-  The estimation should be adjusted, optimal value of r has to be 

updated, example for t=4 

Table: Estimations for t=4. Optimal r and  
corresponding memory consumption 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Compared to Chikhi&Rizk’s method 

Table: Space (bits/node) compared to Chikhi&Rizk  
for t=4 and different values of k. 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



We can cut down a bit more … 

-  Rather than using the same r for all filters B1, B2,…, we 
can use different properly chosen coefficients r1,r2, …  

-  This allows saving another 0.2 – 0.4 bits/k-mer 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments I:   E.Coli, varying k 

-  10M E.Coli reads of 100bp 
-  3 versions compared: 1 Bloom (=Chikhi&Rizk), 2 

Bloom (t=2) and 4 Bloom (t=4) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments II: Human dataset 

-  564M Human reads of 100bp (~17X coverage) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Experiments I (cont) 

* slide courtesy of Salikhov, Sacomoto & Kucherov 



Efficiently enumerating cFP

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22


Bloom filters & De Bruijn Graphs
So, we can use Bloom filters to help efficiently represent 
De Bruijn Graphs.

Other variants (e.g. counting Bloom filters (Melsted & 
Pritchard, BMC Bioinformatics, 2011)) allow us to count 
approximate occurrences of each k-mer, allowing us to 
sidestep huge storage requirements for k-mers 
occurring exactly once.

Such an idea is implemented in BFCounter, and brings 
us back, full-circle, to the problem of counting k-mers!



Probabilistic Data Structures & k-mer Counting

Some recent methods apply Bloom filters or related 
ideas to the problem of k-mer counting.  One such  
method is khmer, which uses the count-min sketch 
data structure.



Probabilistic Data Structures & k-mer Counting

Instead of a an array of m-bits, store a 2D, array, CM, of 
size d x w — d is called the depth of the array, and there 
are d independent hash functions, w is called with width 
of the array.  This is an O(wd) data structure.



Probabilistic Data Structures & k-mer Counting
Like Bloom filters, 2 mains operations:

Update (k, v) — for each entry CM[i, hi(k)], where 0 < i < 
d, increment the value by v.
Query (k) — compute v = min CM[i, hi(k)]

0 <i <d

Both are O(d) operations



Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won’t prove bounds)

Let âi be the result returned by Query(i).  We have that:

ai  âi (always)

âi  ai + ✏ ||a||1 (with probability at least
1

�
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Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won’t prove bounds)

Let âi be the result returned by Query(i).  We have that:

ai  âi (always)

âi  ai + ✏ ||a||1 (with probability at least
1

�
)

where,
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base of nat. log



The Count-Min Sketch for k-mer counting

This approach is used in the k-mer counting software khmer

No exact data structure is maintained, just a CMS

This allows for answering approximate count queries 
efficiently.

Authors compared to a large number of other k-mer 
counters under several different metrics.



*from Zhang et al. PLoS ONE, 2014



*from Zhang et al. PLoS ONE, 2014



*from Zhang et al. PLoS ONE, 2014



Querying for random k-mers

*from Zhang et al. PLoS ONE, 2014



Miscount & FP rate; changing 𝜖 and δ 

*from Zhang et al. PLoS ONE, 2014



Miscount & FP-rate

*from Zhang et al. PLoS ONE, 2014



Other uses of this approach
Khmer has been used successfully for other tasks e.g.  

digital normalization:

*from Zhang et al. PLoS ONE, 2014

diginorm algo:

median k-mer abundance of  
k-mers in the read



Work along these lines at SBU



The Counting Quotient Filter

Compact, lossless representation of multiset h(S)

h : U → {0,…,2p-1} is a hash function, S is multiset, 
U is the universe from which S is drawn

x ∈ S, h(x) is a p-bit number.

Q is an array of 2q r-bit slots

The quotient filter divides h(x) into q(h(x)), r(h(x)); 
the first q and remaining r bits of h(x) where p=q+r

Put r(h(x)) into Q[q(h(x))]



The Counting Quotient Filter
In reality, a bit more complicated because collisions 
can occur.  What if Q[q(h(x))] is occupied by some 
other element (as the result of an earlier collision)?

Move along until you find the next free slot.  
Metadata bits allow us to track “runs” and skip 
elements other than the key of interest efficiently.



The Counting Quotient Filter
How to count?

Rather than having a separate array for counting (a 
la the counting Bloom filter), use the slots of Q 
directly to encode either r(h(x)), or counts!

The CQF uses a somewhat complex encoding 
scheme (base 2r-2), but this allows arbitrary 
variable length counters.

This is a huge win for highly-skewed datasets with 
non-uniform counts (like most of those we 
encoutner).



The Counting Quotient Filter, results

false pos. rate

load factor



The Counting Quotient Filter, results



The Counting Quotient Filter, results



The Counting Quotient Filter, results



Squeakr, applying the CQF to k-mer counting
Counting Memory



Squeakr, applying the CQF to k-mer counting
Counting performance



Squeakr, applying the CQF to k-mer counting
Query performance



Take-home message

The sheer scale of the data we have to deal with makes 
even the most simple tasks (e.g. counting k-mers or storing 

and traversing a De Bruin graph) rife with opportunities 
for the development and application of interesting 

and novel data structures and algorithms! 


