
CSE 549: Efficiently Dealing with
k-mers and De Bruijn Graphs

Scalability at the forefront
I’ve spoken a lot in this class about the need for scalable
solutions, but how big of a problem is it?

Take (one of) the simplest problems you might imagine:

Given: A collection of sequencing reads S and
 a paramater k

Find: The multiplicity of every length-k substring
 (k-mer) that appears in S

This is the k-mer counting problem

k-mer counting

A large number of recent papers tackle this (or a closely
related) problem:

Tallymer, Jellyfish, DSK, KMC, BFCounter,
scTurtle, KAnalyze, khmer, … and many more

How might we count k-mers
A naive approach:

S ATACAGGACGTTC

While S is non-empty:
Draw a string s, from S
For every k-mer, k in s:

counts[k] += 1

ATA

TAC

What’s wrong with this approach?
Speed & Memory usage
Routinely encounter datasets with 10 - 100 x 109 nucleotides

On the order of 1-10 x 109 or more distinct k-mers

If we used a 4-byte unsigned int to store the count, we’d
be using 40GB just for counts

But, hashes have overhead (load factor < 1), and often
need to store the key as well as the value

Easily get to > 100GB of RAM

Just hashing the k-mers and resolving collisions takes time

Smart, parallel hashing actually pretty good
If we put some thought and engineering effort into the
hashing approach, it can actually do pretty well. This
is the insight behind the Jellyfish program.

Massively parallel, lock-free, k-mer counting
— most parallel accesses won’t cause a collision

Efficient storage of hash table values
— bit-packed data structure
— small counter with multiple entries for

 high-count k-mers
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M
— Can reconstruct k from pos in hash table (quotient) and

 remainder.

Smart, parallel hashing actually pretty good
Efficient storage of keys

— f: Uk → Uk, and let hash(k) = f(k) mod M

— Can reconstruct k from pos in hash table (quotient, q) and
 remainder, r. The quotient is simply encoded as the

 position.

— recall: we can represent f(k) as f(k) = qM + r

— Extra work must be done since collisions can occur

— For a general coverage of this idea, see the Quotient Filter
data structure by Bender et al. (2011)

"Don't thrash: how to cache your hash on flash" (PDF). Proceedings of the 3rd USENIX conference on Hot topics in storage and file systems (HotStorage'11). Retrieved 21 July 2012.

http://static.usenix.org/events/hotstorage11/tech/final_files/Bender.pdf

Memory usage of Jellyfish

suffix array-based
approach

Runtime of Jellyfish

System utilization of Jellyfish

Even bigger data
For very large datasets, even this approach may use
too much memory. How can we do better?

Even bigger data
For very large datasets, even this approach may use
too much memory. How can we do better?

Solve a different (but closely-related) problem

What if we just wanted “approximate” counts?

What if we just want to know “if” a k-mer is present?

Bloom Filters
Originally designed to answer probabilistic membership
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {h0, …, hk-1}
To insert e, set A[hi(e)] = 1 for 0 < i < k

To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently
independent, then the probability of false positives is
low and controllable.

How low?

False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n
insertions.

The probability that a randomly chosen bit is 1 is 1-q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q,
for a filter of m bits, after n insertions with k different hash
functions:

E[q] = (1 - 1/m)kn

False Positives

*analysis of Mitzenmacher and Upfal

Mitzenmacher & Unfal used the Azuma-Hoeffding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

Pr(|q � E [q]| � �

m
)  2exp(�2

�2

m
)

That is, the random realizations of q are highly
concentrated around E[q], which yields a false positive
prob of:
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�


1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�


1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�


1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

given an expected
elems

and a desired
false positive rate

we can compute
the optimal size and

of has functions

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing
a De Bruijn graph?

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing
a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our
data set, and say I give you one k-mer that is truly present.

We now have a “navigational” representation of the
De Bruijn graph (can return the set of neighbors of a
node, but not select/iterate over nodes); why?

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing
a De Bruijn graph?

A given (k-1)-mer can only have 2*|Σ| neighbors;
|Σ| incoming and |Σ| outgoing neighbors — for

genomes |Σ| = 4

To navigate in the De Bruijn graph, we can simply
query all possible successors, and see which are

actually present.

 Bloom Filters & De Bruijn Graphs
But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless datastructure
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce
the concept of “cascading” Bloom filters

Idea of Chkhi and Rizk

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assume we want to represent specific set T0 of k-mers
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true
k-mers) is much smaller than the set of all false positives and
can be stored explicitly

Storing B1 and T1 is much more space efficient that other
exact methods for storing T0. Membership of w in T0 is tested
by first querying B1, and if w ∈ B1, check that it is not in T1.

false positives of B1 T0

�  Represent T0 by Bloom filter B1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

�  Result (example): 13.2 bits/node for k=27 (of which 11.1
bits for B1 and 2.1 bits for T1)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Improving on Chikhi and Rizk’s method

�  Main idea: iteratively apply the same construction to T1 i.e.
encode T1 by a Bloom filter B2 and set of ‘false-false
positives’ T2, then apply this to T2 etc.

�  ☞ cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

T2

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

�  iterate the construction on T2
�  we obtain a sequence of sets T0, T1, T2, T3, … encode by

Bloom filters B1, B2, B3, B4, … respectively
�  T0⊇T2⊇T4⊇… , T1⊇T3⊇T5⊇

T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Correctness

Lemma [correctness]: For a k-mer w, consider the smallest i such
that w∉Bi+1. Then w∈T0 if i is odd and w∉T0 if i is even.

�  if w∉B1 then w∉T0
�  if w∈B1, but w∉B2 then w∈T0
�  if w∈B1, w∈B2, but w∉B3 then w∉T0
�  etc.

false positives of B1 T0

T1
T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assuming infinite number of filters

Let N=|T0| and r=mi/ni is the same for every Bi. Then the
total size is

rN + 6rNcr + rNcr + 6rNc2r + rNc2r +... =N(1+6cr)

r
1− cr

|B1| |B2| |B3| |B4| |B5|

The minimum is achieved for r=5.464, which yields the
memory consumption of 8.45 bits/node

* slide courtesy of Salikhov, Sacomoto & Kucherov

Infinity difficult to deal with ;)

-  In practice we will store only a small finite number of filters
B1, B2,…, Bt together with the set Tt stored explicitely

-  t=1 ➟ Chkhi&Rizk’s method
-  The estimation should be adjusted, optimal value of r has to be

updated, example for t=4

Table: Estimations for t=4. Optimal r and
corresponding memory consumption

* slide courtesy of Salikhov, Sacomoto & Kucherov

Compared to Chikhi&Rizk’s method

Table: Space (bits/node) compared to Chikhi&Rizk
for t=4 and different values of k.

* slide courtesy of Salikhov, Sacomoto & Kucherov

We can cut down a bit more …

-  Rather than using the same r for all filters B1, B2,…, we
can use different properly chosen coefficients r1,r2, …

-  This allows saving another 0.2 – 0.4 bits/k-mer

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I: E.Coli, varying k

-  10M E.Coli reads of 100bp
-  3 versions compared: 1 Bloom (=Chikhi&Rizk), 2

Bloom (t=2) and 4 Bloom (t=4)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments II: Human dataset

-  564M Human reads of 100bp (~17X coverage)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I (cont)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Efficiently enumerating cFP

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Bloom filters & De Bruijn Graphs
So, we can use Bloom filters to help efficiently represent
De Bruijn Graphs.

Other variants (e.g. counting Bloom filters (Melsted &
Pritchard, BMC Bioinformatics, 2011)) allow us to count
approximate occurrences of each k-mer, allowing us to
sidestep huge storage requirements for k-mers
occurring exactly once.

Such an idea is implemented in BFCounter, and brings
us back, full-circle, to the problem of counting k-mers!

Probabilistic Data Structures & k-mer Counting

Some recent methods apply Bloom filters or related
ideas to the problem of k-mer counting. One such
method is khmer, which uses the count-min sketch
data structure.

Probabilistic Data Structures & k-mer Counting

Instead of a an array of m-bits, store a 2D, array, CM, of
size d x w — d is called the depth of the array, and there
are d independent hash functions, w is called with width
of the array. This is an O(wd) data structure.

Probabilistic Data Structures & k-mer Counting
Like Bloom filters, 2 mains operations:

Update (k, v) — for each entry CM[i, hi(k)], where 0 < i <
d, increment the value by v.
Query (k) — compute v = min CM[i, hi(k)]

0 <i <d

Both are O(d) operations

Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won’t prove bounds)

Let âi be the result returned by Query(i). We have that:

ai  âi (always)

âi  ai + ✏ ||a||1 (with probability at least
1

�
)

where,

w =
le
✏

m
, d =

l
ln(

1

�
)
m
, and ||a||1 =

nX

i=1

|ai|

Probabilistic Data Structures & k-mer Counting

Similar error analysis to Bloom filters (won’t prove bounds)

Let âi be the result returned by Query(i). We have that:

ai  âi (always)

âi  ai + ✏ ||a||1 (with probability at least
1

�
)

where,

w =
le
✏

m
, d =

l
ln(

1

�
)
m
, and ||a||1 =

nX

i=1

|ai|

base of nat. log

The Count-Min Sketch for k-mer counting

This approach is used in the k-mer counting software khmer

No exact data structure is maintained, just a CMS

This allows for answering approximate count queries
efficiently.

Authors compared to a large number of other k-mer
counters under several different metrics.

*from Zhang et al. PLoS ONE, 2014

*from Zhang et al. PLoS ONE, 2014

*from Zhang et al. PLoS ONE, 2014

Querying for random k-mers

*from Zhang et al. PLoS ONE, 2014

Miscount & FP rate; changing 𝜖 and δ

*from Zhang et al. PLoS ONE, 2014

Miscount & FP-rate

*from Zhang et al. PLoS ONE, 2014

Other uses of this approach
Khmer has been used successfully for other tasks e.g.

digital normalization:

*from Zhang et al. PLoS ONE, 2014

diginorm algo:

median k-mer abundance of
k-mers in the read

Work along these lines at SBU

The Counting Quotient Filter

Compact, lossless representation of multiset h(S)

h : U → {0,…,2p-1} is a hash function, S is multiset,
U is the universe from which S is drawn

x ∈ S, h(x) is a p-bit number.

Q is an array of 2q r-bit slots

The quotient filter divides h(x) into q(h(x)), r(h(x));
the first q and remaining r bits of h(x) where p=q+r

Put r(h(x)) into Q[q(h(x))]

The Counting Quotient Filter
In reality, a bit more complicated because collisions
can occur. What if Q[q(h(x))] is occupied by some
other element (as the result of an earlier collision)?

Move along until you find the next free slot.
Metadata bits allow us to track “runs” and skip
elements other than the key of interest efficiently.

The Counting Quotient Filter
How to count?

Rather than having a separate array for counting (a
la the counting Bloom filter), use the slots of Q
directly to encode either r(h(x)), or counts!

The CQF uses a somewhat complex encoding
scheme (base 2r-2), but this allows arbitrary
variable length counters.

This is a huge win for highly-skewed datasets with
non-uniform counts (like most of those we
encoutner).

The Counting Quotient Filter, results

false pos. rate

load factor

The Counting Quotient Filter, results

The Counting Quotient Filter, results

The Counting Quotient Filter, results

Squeakr, applying the CQF to k-mer counting
Counting Memory

Squeakr, applying the CQF to k-mer counting
Counting performance

Squeakr, applying the CQF to k-mer counting
Query performance

Take-home message

The sheer scale of the data we have to deal with makes
even the most simple tasks (e.g. counting k-mers or storing

and traversing a De Bruin graph) rife with opportunities
for the development and application of interesting

and novel data structures and algorithms!

