
Large Scale
Sequence Search

Fast search of thousands of short-read sequencing
experiments.

Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Solomon and Kingsford. SBT introduced by

Problem:

Solution:

The vast repository of publicly-available data (e.g.,
the SRA) is essentially unsearchable by sequence.
Current solutions (BLAST, STAR) too slow. What if I
find a novel txp and want to search the SRA for it?

A hierarchical index of k-mer content represented
approximately via Bloom filters. Returns “yes/no”
results for individual experiments -> “yes” results
can be searched using more traditional methods.

Recall the bloom filter

Bloom Filters
Originally designed to answer probabilistic membership
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {h0, …, hk-1}
To insert e, set A[hi(e)] = 1 for 0 < i < k

To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently
independent, then the probability of false positives is
low and controllable.

How low?

False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n
insertions.

The probability that a randomly chosen bit is 1 is 1-q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q,
for a filter of m bits, after n insertions with k different hash
functions:

E[q] = (1 - 1/m)kn

SBT
An SBT is a binary tree of bloom filters, where leaves
represent the k-mer set of a single sample.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

SBT Operations

Construction (repeatedly insert samples s):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves
For a node u:

If u has a single child, insert b(s) as the other child
If u has 2 children recurse into child with < hamming dist to b(s)
If u is a leaf (an experiment), create a parent with filter b(u) U b(s)

SBT Operations
Query (given collection of k-mers Kq, parameter θ):

For a node u:
Hash elements of Kq and check if at least θ | Kq| k-mers exist
If not then this sub-tree cannot θ-match our query
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight”
or importance.
Note: because we are searching a set rather than a single element,
we can usually accommodate a much larger false positive rate
(they use 0.5).

SBT Tricks
High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > c times, set

Store Bloom filter as RRR-compressed bit vectors. Greatly reduces
storage space. Individual bits can be accessed without
decompression in O(log m) time.

SBT Speed
Average search time for a single transcript over 2,652 RNA-seq

experiments in the SRA for human blood, breast and brain tissues

SBT Speed

SBT Accuracy

SBT Efficiency

SBT Efficiency

Two improved SBT-related papers (RECOMB 2017)

Both share a core idea
Split sequence bloom tree (SSBT):

Store 2 filters at each node, rsim and rrem

present in all leaves below r
present in some (but not) all

leaves below r

All Some SBT:
present in all leaves below u,

but not in u’s parent
present in some (but not) all

leaves below u

Both share a core idea
This allows an immediate optimization

if rsim or Ball match the query, we can add all leaves
below r/u without explicitly continuing the search

The details differ
SSBT explicitly removed redundant elements

Both share a core idea
The details differ

SBT-AllSome don’t explicitly remove these bits, but
they optimize tree construction to put similar filters
together (agglomerative clustering)

SSBTs take longer to build than the original
but require considerably less memory to store.

SSBTs are also faster to query than SBTs

AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

They examine fewer
nodes than the original SBT too

Which makes them faster to query than the original
SBT as well.

Take home:

SBT “field” is growing quickly
Structure is of both theoretical and practical interest

Some ideas we proposed already done (clustering to
build the tree)

Some remain (everyone is still using Bloom filters here)

Mantis uses a fundamentally different idea — no tree

Key idea — Even though many distinct k-mers exist, their appearance
in different experiments is not (even close) to independent.

That is; there likely exist a small number of experiment sets that explain
most of the k-mers.

More formally, consider an equivalence relation ~ over two k-mers k1, k2
such that k1 ~ k2 iff experiments (k1) = experiments(k2)

Total dataset contains ~3.7 billion distinct k-mers.

However, there are only ~222M distinct color classes.

Mantis uses a fundamentally different idea — no tree

Mantis uses a fundamentally different idea — no tree

Mantis is small, and fast …

and exact!

It can be made approximate if we want to save space

