Large Scale
Sequence Search



Fast search of thousands of short-read sequencing
experiments.

SBT introduced by Solomon and Kingsford.
Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Problem:

he vast repository of publicly-available data (e.g.,
the SRA) is essentially unsearchable by seguence.
Current solutions (BLAST, STAR) too slow. What if |

find a novel txp and want to search the SRA for it?

Solution:
A hierarchical index of k-mer content represented
approximately via Bloom filters. Returns “yes/no”
results for individual experiments -> “yes” results
can be searched using more traditional methods.




Recall the bloom filter



Bloom Fllters

Originally designed to answer probabilistic membership
gueries:

s element e In my set 57?
If yes, always say yes

If no, say no with large probability

False positives can happen; talse negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {ho, ..., hk-1}

To insert e, set Alhi(e)] = 1forO<i<Kk
To query for e, check if Alhi(e)] = 1for0 <i <Kk
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Bloom Filters

f hash functions are good and sufticiently
independent, then the probability of false positives is
ow and controllable.

How low?
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False Positives

Let g be the fraction of the m-bits which remain as 0O after n
iInsertions.

The probability that a randomly chosen bitis 1 is 1-Q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-Q)k

We can derive a formula for the expected value of g,
for a filter of m bits, after n insertions with k different hash
functions:

Elg] = (1 - 1/m)x

*analysis of Mitzenmacher and Upfal



SBT

An SBT is a binary tree of bloom filters, where leaves
represent the k-mer set of a single sample.

Bloom filter: g
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Each node contains a bloom filter that holds the kmers present in the sequencing experiments under it. 8 is the fraction of kmers required to be found at each
node in order to continue to search its subtree. The SBT returns the experiments that likely contain the query sequence on which further analysis can be
performed.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



SBT Operations

Construction (repeatedly insert samples ):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves

For a node u:

f uhas a single child, insert b(s) as the other child

f uhas 2 children recurse into child with < hamming dist to b(s)

f uis aleaf (an experiment), create a parent with filter b(u) U b(s)




SBT Operations

Query (given collection of k-mers Kq, parameter 0):

For a node u:
Hash elements of Kq and check if at least 6 | Kq| k-mers exist
If not then this sub-tree cannot 6-match our query
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight”
or importance.

Note: because we are searching a set rather than a single element,
we can usually accommodate a much larger talse positive rate
(they use 0.5).

Theorem 2
Let q be a query string containing ¢ distinct k-mers. If we treat the k-mers of q as being
independent, the probability that - | g¢ | false-positive k-mers appear in a filter U with FPR ¢ is
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The above expression is nearly 0 when ¢ <= 6.



SBT Tricks

High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > ¢ times, set

as follows: count(s;) =1 if s;is 300 MB or less, count(s ;) = 3 for files of size 300-500 MB,
count(s;) = 10 for files of size 500 MB—-1 GB, count(s;) = 20 for files between 1 GB and 3 GB, and
count(s;) = 50 for files > 3 GB or larger FASTA files.

Store Bloom filter as RRR-compressed bit vectors. Greatly reduces
storage space. Individual bits can be accessed without
decompression in O(log m) time.



SBT Speed

Average search time for a single transcript over 2,652 RNA-seqg
experiments in the SRA for human blood, breast and brain tissues
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SBT Speed
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Supplementary Figure 2
Comparison with STAR on batched queries.

STAR was run using an index built from 100 batch-queries and a size 11 pre-index string. Both SBT and STAR were run using one
thread and SBT was limited to a single filter in RAM. SBT is an estimated 4056 times faster than STAR under these conditions. STAR

times are estimated from extrapolating from querying 100 random SRR files.



SBT Accuracy
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Solid lines represent mean true-positive and false-positive rates, dashed lines represent the median rates on the same experiments. Relaxing @ leads to a
higher sensitivity at the cost of specificity. In more than half of all queries, 100% of true-positive hits can be found with @ as high as 0.9.



SBT Efficiency
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Supplementary Figure 5
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Total number of Sequence Bloom Tree nodes visited as a function of the number of leaf hits when querying 100 random human

transcripts in the Low query set.

Number of nodes includes both internal and leaf nodes of the SBT. Each point represents a single query. When a query is found in
many of the leaves, the query must also visit a nearly equal number of internal tree nodes, and so the tree structure would not provide
any benefit over merely searching all the leaf filters directly. On the other hand, when the query is found in only a few leaves, the total
number of nodes visited can be significantly smaller than the number of leaves. For the SBT built here, we find that for queries that are
found in 600 or fewer leaves, the tree structure and internal nodes result in an improvement of overall efficiency by visiting fewer than
2652 nodes. A naive approach that did not use the tree would require querying 2652 leaf filters for all queries (denoted by dashed line).
Approximately half of the randomly selected queries known to be expressed in the included experiments fall below this threshold.



SBT Efficiency
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Supplementary Figure 8
Time for querying all known human transcripts.

Total times (single-threaded) for querying all 214,293 human transcripts (in batch mode) against all publicly available blood, breast, and
brain RNA-seq experiments in the SRA for 6 = 0.7, 0.8, 0.9 as well as the extrapolated time to run Sailfish on the full dataset. Sailfish is
significantly faster than nearly all other algorithms for RNA-seq quantification.



Two improved SBT-related papers (RECOMB 2017)

Improved Search of Large Transcriptomic Sequencing Databases
Using Split Sequence Bloom Trees

Brad Solomon! and Carl Kingsford*!

AllSome Sequence Bloom Trees

Chen Sun*!, Robert S. Harris*? Rayan Chikhi3, and Paul Medvedev 145



Both share a core 1dea

Split sequence bloom tree (SSBT):

Store 2 filters at each node, rsim and rrem

Tsim = [Vi—o i present in all leaves below r

n

rrem = Uieo(bi — Tsim) presentin some (but not) all
leaves below r

All Some SBT:

Bau(u) = Bn(u) \ Bn(parent(u))
Bsome(u) = Bu(u) \ Bn(w)

poresent in all leaves below u,
but not In u’s parent

poresent in some (but not) all
leaves below U



Both share a core 1dea

This allows an immediate optimization

If rsim Or Ban match the query, we can add all leaves
below r/u without explicitly continuing the search

The details differ

SSBT explicitly removed redundant elements

(a) Uncompressed SSBT
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Both share a core igea
he detalls differ

SBT-AllSome don’t explicitly remove these bits, but
they optimize tree construction to put similar filters
together (agglomerative clustering)
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SSBTs take longer to build than the original
but require considerably less memory to store.

Data Index BFT SBT SSBT
Build Time (Min) 195 6 19
Compression Time (Min) - 6.5 17
Total Time (Min) 195 125 36

Table 4: Build and compression times for SBT, SSBT, and BFT constructed from a 50 experiment set. As
SBT and SSBT were designed to be queried from a compressed state, we compare the time to build and
compress against BFT’s time to build.

Data Index SBT Split SBT
Build Time 18 Hr 78 Hr
Compression Time 17 Hr 19 Hr

Uncompressed Size 1295 GB 1853 GB
Compressed Size 200GB  39.7GB

Table 2: Build statistics for SBT and SSBT constructed from a 2652 experiment set. The sizes are the total
disk space required to store a bloom tree before or after compression. In SSBT’s case, this compression
includes the removal of non-informative bits.

Data Index BFT SBT SSBT
Build Peak RAM (GB) 23 21.5 15.6
Compress Peak RAM (GB) - 242 16.2
Uncompressed Size (GB) 9.2 24 35
Compressed Size (GB) - 39 0.94

Table 3: Build and compression peak RAM loads and on-disk storage costs for SBT, SSBT, and BFT
constructed from a 50 experiment set. BFT does not have a built-in compression tool and cannot be
queried when compressed. For these reasons, the uncompressed BFT is compared against the compressed
SBT/SSBT.



SSBTs are also faster to query than SBTs

Index TPM >100 TPM >500 TPM >1000

BFT  75Sec (11.8GB) 75Sec(11.8 GB) 75 Sec (11.8 GB)
SBT 19 Sec 2.9GB)  21Sec (3.1 GB) 22 Sec (3.2 GB)
SSBT 5.8 Sec (0.64 GB) 6.2 Sec (0.65 GB) 6.3 Sec (0.66 GB)

Table 5: Comparison in query timing (and average peak memory) between SBT, SSBT, and BFT indices for
50 experiments.

Index TPM >100 TPM >500 TPM >1000

SBT 19.7 Min 20.7 Min 20 Min
SSBT 3.7 Min 3.8 Min 3.6 Min

Table 6: Comparison in query timing between SBT and SSBT for 2652 experiments.

Query Time: 6=0.7 6=0.8 6=0.9

SBT 20Min  19Min 17 Min
SSBT 3.7Min 3.5Min 3.2 Min
RAM SSBT 31 Sec 29 Sec 26 Sec

Table 7: Comparison of query times using different thresholds € for SBT and SSBT using the set of data at
TPM 100.



AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

SBT-SK SBT-ALSO
construction of tree topology (i.e. clustering) N/A 27m
construction of internal nodes 56h 54m 26h 3m
temporary disk space 1,235 GB 2,469 GB
final disk space 200 GB 177 GB

Table 1. Construction time and space. Times shown are wall-clock times. A single thread was used. Note the SBT-SK
tree that was constructed for the purposes of this Table differs from the tree used in [36] and in our other experiments
because the insertion order during construction was not the same as in [36] (because it was not described there).
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Fig. 3. Number of nodes examined per query for SBT-SK, SBT-ALSO, as well two intermediate SBTs. A set of
1,000 transcripts were chosen at random from Gencode set, and each one queried against the four different trees. A
dot represents a query and shows the number of matches in the database (x-axis) compared to the number of nodes
that had to be loaded from disk and examined during the search (y-axis). For each tree (color), we interpolated a
curve to show the pattern. The dashed horizontal line represents the hypothetical algorithm of simply checking if
the query #-matches against each of the database entries, one-by-one. For 6, we used the default value in the SBT
software (6 = 0.9).



Which makes them taster to query than the original

SBT as well.

SBT-SK SBT-SK+CLUST SBT-ALSO
1 query 1m 11s / 301 MB 56s / 299 MB 34s / 301 MB
10 queries 4m 4s / 305 MB 3m 17s / 304 MB 2m 4s / 313 MB

100 queries
1,000 queries
198,074 queries

7m 44s / 315 MB

25m 31s / 420 MB

6m 31s / 317 MB
17m 22s / 418 MB

3081m 42s / 22 GB -

4m 44s / 353 MB
8m 23s / 639 MB
462m 39s / 63 GB

Table 2. Query wall-clock run times and maximum memory usage, for batches of different sizes. For the batch of
1,000 queries, we used the same 1,000 queries as in Figure 3. For the batch of 100 queries, we generated three replicate
sets, where each set contains 100 randomly sampled transcripts without replacement from the 1,000 queries set. For
the batch of 10 queries, we generated 10 replicate sets by partitioning one of the 100 query sets into 10 sets of 10
queries. For the batch of 1 query, we generated 50 replicate sets by sampling 50 random queries from Gencode set.
The shown running times are the averages of these replicates. A dash indicates we did not run the experiment. For
6, we used the default value in the SBT software (6 = 0.9).

SBT-SK | SBT-ALSO

regular alg | regular alg ‘ large exact alg large heuristic alg
query time 1397m 18s 195m 33s 10m 35s 8m 32s
query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

Table 3. Performance of different trees and query algorithms on a large query. We show the performance of SBT-
SK and three query algorithms using SBT-ALSO compressed with ROAR: the regular algorithm, the large exact
algorithm, and the large heuristic algorithm. We show the wall-clock run time and maximum RAM usage. We used
6 = 0.8 for this experiment. The ROAR compressed tree was 190 GB (7.3% larger than the RRR tree).



Take home:

SBT “field” is growing quickly

Structure is of both theoretical and practical interest

Some ideas we proposed already done (clustering to
build the tree)

Some remain (everyone is still using Bloom filters here)



Mantis: A Fast, Small, and Exact Large-Scale Sequence Search Index

Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender, Michael Ferdman, Rob Johnson, Rob Patro
doi: https://doi.org/10.1101/217372

Posted November 10, 2017.




Mantis uses a fundamentally ditferent idea — no tree

Key idea — Even though many distinct k-mers exist, their appearance
in different experiments is not (even close) to independent.

That is; there likely exist a small number of experiment sets that explain
most of the k-mers.

More formally, consider an equivalence relation ~ over two k-mers ki, ko
such that k1 ~ kz iff experiments (k1) = experiments(kz)

Total dataset contains ~3.7 billion distinct k-mers.

However, there are only ~222M distinct color classes.



Mantis uses a fundamentally ditferent idea — no tree

Input Experiments CQF
1! Eos % % k-mer _|Color ID Color class table
ACTG|| ACTG ACTG Ei1ExFEs by
ACTT . ACTT 0 110
Mantis
CTTG|| CTTG| —» | CTTG 0 111
TTTC || TTTC TTTC 1 010
GCGT || GCGT || GCGT GCGT 1110 1|1
AGCC|| AGCC AGCC

Fig. 1: The Mantis indexing data structures. The CQF contains mappings from k-mers to color-class IDs. The color-class table
contains mappings from color-class IDs to bit vectors. Each bit vector is NV bits, where IV is the number of experiments from which
k-mers are extracted. The CQF is constructed by merging /N input CQFs each corresponding to an experiment. A query first looks
up the k-mer(s) in the CQF and then retrieves the corresponding color-class bit vectors from the color-class table.



Mantis uses a fundamentally different idea — no tree
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Fig. 2: The distribution of the number of k-mers in a color class and ID assigned to the color class. The color class with the most
number of k-mers gets the smallest ID. And the color class with least number of k-mers gets the largest ID. This distribution of IDs
helps save space in Mantis.



Mantis is small, and fast ...

Mantis SSBT
Build time 22 Hr 97 Hr
Representation size 32 GB 39.7 GB

Table 2: Time and space measurement for Mantis and SSBT. Total time taken by Mantis and SSBT to construct the representation.
Total space needed to store the representation by Mantis and SSBT. Numbers for SSBT were taken from the SSBT paper [23].

Mantis SSBT (0.7) SSBT (0.8) SSBT (0.9)
10 Transcripts 25 Sec 3 Min 8 Sec 2 Min 25 Sec 2 Min 7 Sec
100 Transcripts 28 Sec 14 Min 55 Sec 10 Min 56 Sec 7 Min 57 Sec
1000 Transcripts 1 Min 3 Sec 2 Hr 22 Min 1 Hr 54 Min 1 Hr 20 Min

Table 3: Time taken by Mantis and SSBT to perform queries on three sets of transcripts. The set sizes are 10, 100, and 1000
transcripts. For SSBT we used three different threshold values 0.7, 0.8, and 0.9. All the experiments were performed by either
making sure that the index structure is cached in RAM or is read from ramfs.



and exact!

Both Only-Mantis Only-SSBT Precision
10 Transcripts 2018 19 1476 0.577
100 Transcripts 22466 146 10588 0.679
1000 Transcripts 160188 1409 95606 0.626

Table 4: Comparison of query benchmark results for Mantis and SSBT. Both means the number of those experiments that are
reported by both Mantis and SSBT. Only-Mantis and Only-SSBT means the number of experiments reported by only Mantis and
only SSBT. All three query benchmarks are taken from Table|§|for 6 = 0.8.

It can be made approximate if we want to save space

Theorem 1. A query for q k-mers with threshold 0 returns only experiments containing at least 0q — O(dq + logn)
queried k-mers w.h.p.

Proof. This follows from Chernoff bounds and the fact that the number of queried k-mers that are false positives in an
experiment is upper bounded by a binomial random variable with mean dgq.



