
Large Scale 
Sequence Search



Fast search of thousands of short-read sequencing 
experiments.

Nature biotechnology. 2016 doi: 10.1038/nbt.3442

Solomon and Kingsford. SBT introduced by 

Problem:

Solution:

The vast repository of publicly-available data (e.g., 
the SRA) is essentially unsearchable by sequence. 
Current solutions (BLAST, STAR) too slow. What if I 
find a novel txp and want to search the SRA for it?

A hierarchical index of k-mer content represented 
approximately via Bloom filters.  Returns “yes/no” 
results for individual experiments -> “yes” results 
can be searched using more traditional methods.



Recall the bloom filter



Bloom Filters
Originally designed to answer probabilistic membership 
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits 
Use k different hash functions, {h0, …, hk-1} 
To insert e, set A[hi(e)] = 1 for 0 < i < k

To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007



Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently 
independent, then the probability of false positives is 
low and controllable.

How low?



False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n 
insertions.

The probability that a randomly chosen bit is 1 is 1-q. 

But we need a 1 in the position returned by k different hash 
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q, 
for a filter of m bits, after n insertions with k different hash 
functions:

E[q] = (1 - 1/m)kn 



SBT
An SBT is a binary tree of bloom filters, where leaves 
represent the k-mer set of a single sample.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



SBT Operations

Construction (repeatedly insert samples s):

Let b(s) be the bloom filter of sample s

Use b(s) to walk from the root of T to the leaves
For a node u: 

If u has a single child, insert b(s) as the other child 
If u has 2 children recurse into child with < hamming dist to b(s) 
If u is a leaf (an experiment), create a parent with filter b(u) U b(s)



SBT Operations
Query (given collection of k-mers Kq, parameter θ):

For a node u: 
Hash elements of Kq and check if at least θ | Kq| k-mers exist 
If not then this sub-tree cannot θ-match our query 
Else continue searching both children recursively

The implementation allows each query k-mer to be given a “weight” 
or importance.
Note: because we are searching a set rather than a single element, 
we can usually accommodate a much larger false positive rate 
(they use 0.5).



SBT Tricks
High false positive rate lets filters be small (& use only a single hash)

Insert in leaves only k-mers occurring > c times, set 

Store Bloom filter as RRR-compressed bit vectors.  Greatly reduces 
storage space.  Individual bits can be accessed without 
decompression in O(log m) time. 



SBT Speed
Average search time for a single transcript over 2,652 RNA-seq 

experiments in the SRA for human blood, breast and brain tissues



SBT Speed



SBT Accuracy



SBT Efficiency



SBT Efficiency



Two improved SBT-related papers (RECOMB 2017)



Both share a core idea
Split  sequence bloom tree (SSBT):

Store 2 filters at each node, rsim  and rrem

present in all leaves below r
present in some (but not) all 

leaves below r

All Some SBT:
present in all leaves below u, 

but not in u’s parent
present in some (but not) all 

leaves below u



Both share a core idea
This allows an immediate optimization

if rsim or Ball match the query, we can add all leaves 
below r/u without explicitly continuing the search

The details differ
SSBT explicitly removed redundant elements



Both share a core idea
The details differ

SBT-AllSome don’t explicitly remove these bits, but 
they optimize tree construction to put similar filters 
together (agglomerative clustering)



SSBTs take longer to build than the original 
but require considerably less memory to store.



SSBTs are also faster to query than SBTs



AllSome SBTs are faster to construct than SBT (called SBT-
SK here), but not much smaller.

They examine fewer 
nodes than the original SBT too



Which makes them faster to query than the original 
SBT as well.



Take home:

SBT “field” is growing quickly
Structure is of both theoretical and practical interest

Some ideas we proposed already done (clustering to 
build the tree)

Some remain (everyone is still using Bloom filters here)





Mantis uses a fundamentally different idea — no tree

Key idea — Even though many distinct k-mers exist, their appearance 
in different experiments is not (even close) to independent.

That is; there likely exist a small number of experiment sets that explain 
most of the k-mers.

More formally, consider an equivalence relation ~ over two k-mers k1, k2 
such that k1 ~ k2 iff experiments (k1) = experiments(k2)

Total dataset contains ~3.7 billion distinct k-mers.

However, there are only ~222M distinct color classes.



Mantis uses a fundamentally different idea — no tree



Mantis uses a fundamentally different idea — no tree



Mantis is small, and fast …



and exact!

It can be made approximate if we want to save space


