
Space-efficient 
alignment



Space is often the limiting factor

O(nm) time is a problem, but as I’ve said, we strongly 
believe we can’t to much better. 

Can we do better in terms of space?

It turns out we can — at the same asymptotic time 
complexity!

Combining dynamic programming with the divide-and-
conquer algorithm design technique.

Hirshberg’s algorithm



Warmup — optimal score in linear space
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Consider our DP matrix:



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?
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Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

If we fill rows left - right, and bottom to top, to fill in  
row i, we only need scores from row i-1.



Warmup — optimal score in linear space
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Columns also work; if we go left - right, and bottom to 
top, to fill in column i, we only need scores from col i-1.



Warmup — optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in  
row i, we only need scores from row i-1.

Thus, we can compute the optimal score, keeping  
at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the 
strings, and so we can compute the optimal score, in 
linear space.



How can we compute the optimal alignment?

This method won’t work for computing the optimal 
alignment; we need all rows to be able to follow the 
backtracking arrows.

How can we find the optimal alignment in linear 
space?

Hirschberg’s algorithm provides a solution.



Re-using subproblems
Consider, again, the meaning of the DP matrix
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Re-using subproblems
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Re-using subproblems
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What about suffixes?
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Consider filling in the DP matrix from the opposite 
direction (top right to bottom left)
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What about suffixes?
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Optimal alignment between x[8:] and y[6:]
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What about suffixes?
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This lets us compute optimal score between a suffix of 
x with all suffixes of y
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What about suffixes?

This lets us build up optimal alignments for increasing 
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):
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What about suffixes?

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
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>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

note: the slight change in indexing here. It will make 
writing our solution easier.



Finding the optimal alignment

How does this help us compute the optimal alignment 
in linear space?

Algorithmic idea: Combine both dynamic programs 
using divide-and-conquer 

Divide-and-conquer splits a problem into smaller sub-
problems and combines the results (much like DP).

Examples: MergeSort & Karatsuba multiplication



Think about this in “graph” land
What do we know about the structure of the optimal 
path in our “edit-DAG”?



Think about this in “graph” land
Can’t get from here to there without passing through  
the middle.



Finding the optimal alignment
Consider the middle column — we know that the 
optimal aln. must use some cell in this column; 
which one?



Finding the optimal alignment
It uses the cell (i,j) such that OPT[i,j] + OPT’[i,j] has the 
highest score. Equivalently, the best path uses some vertex v 
in the middle col. and glues together the best paths from the 
source to v and from v to the sink.



Finding the optimal alignment
Claim: OPT[i,j] and OPT’[i,j] can be computed in 
linear space using the trick from above for finding 
an optimal score in linear space



Algorithmic Idea
Devise a D&C algorithm that finds the optimal 
alignment path recursively, using the space-
efficient scoring algorithm for each subproblem.



D&C Alignment

DCAlignment(x, y):
    n = |x|
    m = |y|
    if m <= 2 or n <= 2:
        use “normal” DP to compute OPT(x, y)
    compute space-efficient OPT(x[1:n/2], y)
    compute space-efficient OPT’(x[n/2+1:n], y)
    let q be the index maximizing OPT[n/2,q] + OPT’[n/2,q]
    add back pointer of (n/2,q) to the optimal alignment P
    DCAlignment(x[1:n/2], y[1:q]) 
    DCAlignment(x[n/2+1:n], y[q+1:m])
    return P

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 288)



D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

How can we show that this entire process still takes 
quadratic time?

Let T(n,m) be the running time on strings x and y of 
length n and m, respectively.  We have:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

DCAlignment(x[1:n/2], y[1:q]) DCAlignment(x[n/2+1:n], y[q+1:m]) 

with base cases:

T(n,2) ≤ cn
T(2,m) ≤ cm



D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

Base: 
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

Problem: we don’t know what q is. First, assume both 
x and y have length n and q=n/2  
(will remove this restriction later)

T(n) ≤ 2T(n/2) + cn2

This recursion solves as T(n) = O(n2) 
Leads us to guess T(n,m) grows like O(nm)



Smarter Induction

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ knm

Base: 
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q) 
           ≤ cnm  + kqn/2 + k(m-q)n/2 
           ≤ cnm  + kqn/2 + kmn/2 - kqn/2 

      = [c+(k/2)] mn

Proof:

Thus, our proof holds if k=2c, and T(n,m) = O(nm) QED



Conclusion
Trivially, we can compute the cost of an optimal 
alignment in linear space

By arranging subproblems intelligently we can define a 
“reverse” DP that works on suffixes instead of prefixes

Combining the “forward” and “reverse” DP using a 
divide and conquer technique, we can compute the  
optimal solution (not just the score) in linear space.

This still only takes O(nm) time; constant factor more 
work than the “forward”-only algorithm.


