
Space-efficient
alignment

Space is often the limiting factor

O(nm) time is a problem, but as I’ve said, we strongly
believe we can’t to much better.

Can we do better in terms of space?

It turns out we can — at the same asymptotic time
complexity!

Combining dynamic programming with the divide-and-
conquer algorithm design technique.

Hirshberg’s algorithm

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Consider our DP matrix:

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?
These

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

If we fill rows left - right, and bottom to top, to fill in
row i, we only need scores from row i-1.

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Columns also work; if we go left - right, and bottom to
top, to fill in column i, we only need scores from col i-1.

Warmup — optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in
row i, we only need scores from row i-1.

Thus, we can compute the optimal score, keeping
at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the
strings, and so we can compute the optimal score, in
linear space.

How can we compute the optimal alignment?

This method won’t work for computing the optimal
alignment; we need all rows to be able to follow the
backtracking arrows.

How can we find the optimal alignment in linear
space?

Hirschberg’s algorithm provides a solution.

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted row?

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of x against all of y in this row

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted column?

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against all of x in this column

x

y

Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith
column. How do we get these values efficiently?

x

y

Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith
column. Easy if we fill in by columns instead of rows.

x

y

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Consider filling in the DP matrix from the opposite
direction (top right to bottom left)

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Optimal alignment between x[8:] and y[6:]

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

This lets us compute optimal score between a suffix of
x with all suffixes of y

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

This lets us build up optimal alignments for increasing
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

What about suffixes?

This lets us build up optimal alignments for increasing
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

What about suffixes?

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

note: the slight change in indexing here. It will make
writing our solution easier.

Finding the optimal alignment

How does this help us compute the optimal alignment
in linear space?

Algorithmic idea: Combine both dynamic programs
using divide-and-conquer

Divide-and-conquer splits a problem into smaller sub-
problems and combines the results (much like DP).

Examples: MergeSort & Karatsuba multiplication

Think about this in “graph” land
What do we know about the structure of the optimal
path in our “edit-DAG”?

Think about this in “graph” land
Can’t get from here to there without passing through
the middle.

Finding the optimal alignment
Consider the middle column — we know that the
optimal aln. must use some cell in this column;
which one?

Finding the optimal alignment
It uses the cell (i,j) such that OPT[i,j] + OPT’[i,j] has the
highest score. Equivalently, the best path uses some vertex v
in the middle col. and glues together the best paths from the
source to v and from v to the sink.

Finding the optimal alignment
Claim: OPT[i,j] and OPT’[i,j] can be computed in
linear space using the trick from above for finding
an optimal score in linear space

Algorithmic Idea
Devise a D&C algorithm that finds the optimal
alignment path recursively, using the space-
efficient scoring algorithm for each subproblem.

D&C Alignment

DCAlignment(x, y):
 n = |x|
 m = |y|
 if m <= 2 or n <= 2:
 use “normal” DP to compute OPT(x, y)
 compute space-efficient OPT(x[1:n/2], y)
 compute space-efficient OPT’(x[n/2+1:n], y)
 let q be the index maximizing OPT[n/2,q] + OPT’[n/2,q]
 add back pointer of (n/2,q) to the optimal alignment P
 DCAlignment(x[1:n/2], y[1:q])
 DCAlignment(x[n/2+1:n], y[q+1:m])
 return P

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 288)

D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

How can we show that this entire process still takes
quadratic time?

Let T(n,m) be the running time on strings x and y of
length n and m, respectively. We have:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

DCAlignment(x[1:n/2], y[1:q]) DCAlignment(x[n/2+1:n], y[q+1:m])

with base cases:

T(n,2) ≤ cn
T(2,m) ≤ cm

D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

Base:
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

Problem: we don’t know what q is. First, assume both
x and y have length n and q=n/2
(will remove this restriction later)

T(n) ≤ 2T(n/2) + cn2

This recursion solves as T(n) = O(n2)
Leads us to guess T(n,m) grows like O(nm)

Smarter Induction

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ knm

Base:
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)
 ≤ cnm + kqn/2 + k(m-q)n/2
 ≤ cnm + kqn/2 + kmn/2 - kqn/2

 = [c+(k/2)] mn

Proof:

Thus, our proof holds if k=2c, and T(n,m) = O(nm) QED

Conclusion
Trivially, we can compute the cost of an optimal
alignment in linear space

By arranging subproblems intelligently we can define a
“reverse” DP that works on suffixes instead of prefixes

Combining the “forward” and “reverse” DP using a
divide and conquer technique, we can compute the
optimal solution (not just the score) in linear space.

This still only takes O(nm) time; constant factor more
work than the “forward”-only algorithm.

