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RNA Splicing

DNA transcribed into pre-mRNA

Some “processing occurs’
capping & polyadenylation

Introns removed from pre-mRNA

Introns removed resulting in
mature mRNA
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Alternative Splicing & Isoform Expression

AT5G461100, positions 2100-2250
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What iIs RNA sequencing

we sequence small bits of these*
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Actual protocols are much more involved
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Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the
Expected Fragment Starting-Point and Coverage Profile." Journal of Computational Biology 24.3 (2017): 200-212.



Transcript Quantification: An Overview
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Why not simply “count” reads

The RNA-seq reads are drawn from transcripts, and
our (spliced) aligners let us map them back to the
transcripts on the genome from which they originate.

Problem: How do you handle reads that align equally-
well to multiple isoforms / or multiple genes?

e Discarding multi-mapping reads leads to incorrect
and biased quantification

e Even at the gene-level, the transcriptional output of
a gene should depend on what isoforms it is

expressing.



First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample from them by
tossing down darts.

Here, a dot of a color means | hit a circle of that color.
What type of circle is more prevalent?
What is the fraction of red / blue circles?
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First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample from them by
tossina down darts.

You're missing a crucial piece of information!
The areas!

There is an analog in RNA-seq, one needs to know the
length of the target from which one is drawing to
meaningfully assess abundance!



Resolving multi-mapping is fundamental to quantification

Can even affect abundance estimation in absence of alternative-splicing
(e.g. paralogous genes)

Paralogs of ENSG00000090612

salmon_gene featureCounts_FPKM_gene

-
o
[

Estimated TPM

spearman = 0.975
pearson = 0.975

spearman = 0.643
pearson = 0.78

1 | ®

1 10 1 10
True TPM

From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)



Resolving multi-mapping is fundamental to quantification

These errors can affect DGE calls
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From: Soneson C, Love MI and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)
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How can we perform inference from sequenced fragments?

Experimental Mixture

L In an unbiased experiment,

 — - sampling fragments depends on:

___— — * # of copies of each txp type

—————_——  * length of each txp type
ength( =100 x6 copies =600nt ~ 30% blue

)
ength( =—— )=066 x 19 copies =1254 nt ~60% green
—— )=33 x6copies =198nt ~10% red

T

We call these values n =[0.3, 0.6, 0.1] the nucleotide fractions,
they become the primary quantity of interest



How can we perform inference from sequenced fragments?

Think about the “ideal” RNA-seq experiment . . .

Experimental Mixture Read set
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sequencing oracle

(1) Pick transcript t « total available nucleotides = count * length

(2) Pick a position p on t “uniformly at random”
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How can we perform inference from sequenced fragments?
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Resolving a single multi-mapping read
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Say we knew the n, and observed a single read that mapped
ambiguously, as shown above.

What is the probability that it truly originated from G or R?

Pr{r from G} = —= . {{S:_(Q_)___m _________ = 5% (jf 57 = 0.75
19?5??@ __________ length(F).* ‘66 " 33 normalization
1 "H}%1 0.1 factor
Pr{r from R} = ——— - -r'l'g't'"'@-) ----------- =5 53 51 = 0.25

ength(=———=) =100 x 6 copies =600nt ~ 30% blue
ength( =—— )=066 Xx 19 copies =1254 nt ~60% green

ength( e )=33 x6copies =198nt ~10% red
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TPM; = p; x 10° where 0 < p; <1 and » p; =1
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R transcript |

Pi = Zj % Length of transcript |
J
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Aside: Maximum Likelihood

-st. and the

=M Algorithm

The following slides on MLE & EM are taken from the UW CSE 312 Web*

Portions of the CSE 312 Web may be reprinted or adapted for academic nonprofit purposes, providing the source is accurately quoted and duly credited. The CSE 312 Web: © 1993-2011,

Department of Computer Science and Engineering, University of Washington.



Parameter Estimation

Assuming sample xj, x2, ..., Xn is from a
parametric distribution f(x|0), estimate 0.

E.g.. Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

O = probability of Heads

f(x|0) is the Bernoulli probability mass function with parameter 0



Likelihood

P(x | 8): Probability of event x given model O

Viewed as a function of x (fixed 0), it’s a probability
Eg,2<P(x|0) =1
Viewed as a function of O (fixed x), it’s a likelihood

E.g., 26 P(x | O) can be anything; relative values of interest.

E.g.,if O = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when 8 = .6 than 6 = .5

And what 8 make HHTHH most likely?
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Likelihood Function

Probability of HHTHH,

given P(H) = O:
0 04(1-0)
0.2 0.0013
0.5 0.0313
0.8 0.0819
0.95 0.0407

P( HHTHH | Theta)

0.08

0.06

0.04

0.02

0.00

0.0

0.2

0.4

Theta

0.6

0.8

1.0




Maximum Likelihood
Parameter Estimation

One (of many) approaches to param. est.

Likelihood of (indp) observations x , x,, ..., X

n

n

L(zr,as,van | 0) = [[ £l | 0)

1=1

As a function of 8, what 8 maximizes the
likelihood of the data actually observed

Typical approach: %L(fi /) =0 or

0
rop Bl [0 —
57 108 G [s=—20




Example |

n coin fllps,x,,xz, v X5 N tails, n, heads, n,+n, =n;

O = probability of heads

L(zi,x9,...,2, | 0)

log L(x1,29,...,2, | 0)

% log L(x1,22,...,2, | 0)

Setting to zero and solving:

|

dL/d6 =0

0.002
0.0015
0.001
0.0005

0.2 0.4 0.6 0.8 1

(1 — )™
ng log(1 — 0) + ny log 0

ni
1—9—|— 0

Observed fraction of

A

0

successes in sample is
ni MLE of success
n probability in population

(Also verify it's max, not min, & not better on boundary)



Bias

A desirable property: An estimatorY of a
parameter O is an unbiased estimator if

E[Y] =6

For coin ex. above, MLE is unbiased:
Y = fraction of heads = (Z1<i<nXi)/n,

(X; = indicator for heads in it trial) so
E[Y] = G1<i<n E[XiD/n =n0B/n=06




Aside: are all unbiased
estimators equally good!?

 No!

* E.g, “lgnore all but Ist flip;if it was H, let
Y = l;elseY’ =07

* Exercise: show this is unbiased

* Exercise: if observed data has at least one H
and at least one T, what is the likelihood of
the data given the model with 6 = Y’ ?



Parameter Estimation

Assuming sample xj, x2, ..., Xn is from a
parametric distribution f(x|0), estimate 0.

E.g.: Given n normal samples,
estimate mean & variance

flz) = —Le(@-m/(20%)

2w o2

0 = (M? 02)




Ex2: | got data; a little birdie tells me
it’s normal, and promises 02 = |

- - - ——— — = - -
Observed Data

Al 4



Which is more likely: (a) this?

Observed Data



Which is more likely: (b) or this!?

Observed Data



Which is more likely: (c) or this?

- - - x—)(-)(—)l—x-)(-x — -
Observed Data

M



Which is more likely: (c) or this!?

Looks good by eye, but how do | optimize my estimate of 4 !

- - - )(—)(-)(—)rx-x-x — -
Observed Data

M



EX. 2: r; ~ N(u,0%), 0 =1, punknown

1 2
L(x1,29,...,2,]0) = H o—(w:i—6)%/2
1Zi<n VAT
1 . —0)2
InL(zy,@2,....zal0) = Y —In2m - ( : )
1<i<n
LInL(xy, @2, 2000) = Y (x;—0)
1<i<n
And verify it's max, B B
not min & not better - (Zlgign xz) —nt = 0

on boundary

dL/de =0

A b = (Z1§i§n5’7z’) /n =T
: Sample mean is MLE of

2 3 4 3
population mean

~] O N




Last lecture:
How to estimate [ given data

For this problem, we got a nice, closed
form, solution, allowing calculation of the
U, O that maximize the likelihood of the
observed data.

We're not always so lucky...

- ————— e —— . —— - -
Observed Data

28



More Complex Example

(A modeling decision, not a math problem...,
but if later, what math?)

29



A Real Example:

CpG content of human gene promoters

1000
(7]
§ 800
(]
§
2 600
)
S 400 -
£
z
200 -
0

Normalized CpG

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

30

©2006 by National Academy of Sciences



Gaussian Mixture Models / Model-based Clustering

90000 0—© 9—000- 000 —

Parameters 6

means L4 (42

variances 0% o2

mixing parameters T To=1—m

2 2
P.D.F. f(x|lp1,01)  f(xlpe,03)
| ikelihood
2 2 No
L(.CUl,Q?Q, S 733?1‘“17“270-170-277-177-2)
closed-

9 form
— H?zl Zj:l 7 [ (@il U?‘) max

31



Gaussian Mixture Models / Model-based Clustering

M

oo P
Parameters 0

means L4 (42

variances o7 05

mixing parameters T To=1—m7
P.D.F. f(zlpr,0f)  f(zlp2,03) Mixing proportion
Likelihood

L(CU]_,CUQ,...,xn‘ul,MQ,O-%,O-%,T]_,TQ) o

closed-

form
:ij(xi’:ujaajz) max
/ \ >

Product over data points Sum overpossible distribution  Likelihood of data

(assumed independent) of origin point given this
distribution
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—0.2, 0, 0.2
11.8, 12, 12.2
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A What-If Puzzle

Likelihood 0

~

é 2 2
L(CBl,ZCQ, c o ,ZCn‘Mly,LLQ)O-l)O-Q?Tl?TQ)

n 2
= [[ims Zj:l 7i f (i |y, 032')
Messy: no closed form solution known for
finding O maximizing L

But what if we

knew the

1 if z; drawn from f;
Zz'j =
hidden data?

0 otherwise

35



EM as Egg vs Chicken

IF z; known, could estimate parameters O
E.g., only points in cluster 2 influence w,, 0> NN

- — e —

IF parameters O known, could estimate z;

E.g., if [xi — wil/o1 << |xi = wa|/o2, then zi >> zp ]

But we know neither; (optimistically) iterate:

E: calculate expected zj, given parameters
M: calc “MLE” of parameters, given E(z;)

Overall, a clever “hill-climbing” strategy

36



Simple Version:
“Classification EM”

If z; < .5, pretend it’s 0; z; > .5, pretend it’s |
.e., classify points as component O or |
Now recalc 0, assuming that partition

Then recalc z; , assuming that 0

Then re-recalc 0, assuming new z;, etc., etc.

“Full EM” is a bit more involved, but this is the crux.

37



Full EM

x;'s are known; 8 unknown. Goal is to find MLE 0 of:
L(le‘l, N 7 ‘ (9) (hidden data likelihood)
Would be easy if z;;'s were known, i.e., consider:
L(xl, ce s L s Z119R129+« 5 2m2 ’ (9) (complete data likelihood)
But 2;;'s aren’t known.
Instead, maximize expected likelihood of visible data
E(L(x1,...,Tn, 211,212, - -, 2n2 | 0)),

where expectation is over distribution of hidden data (z;;'s)

38



The E-step:
Find E(Z;), i.e. P(Zi=1)

Assume O known & fixed

A (B): the event that x; was drawn from fi (f2) )
|

D: the observed datum x; /Q,p@*
Expected value of z is P(A|D) —"
P(D|IAP(A
P(A|D) = (D|4)P(A) Repeat
P(D) :
or
P(D) = P(D|A)P(A)+ P(D|B)P(B) each

Xi

= fi(@il0) 1+ falzil02) T2

39



Complete Data
Likelihood

U 1 if 1 drawn from f;
771 0 otherwise

Recall:

so, correspondingly,

, _ Tifi(xr ] 0) ifz11=1
Uen,z1510) = { Tofa(x1 | @) otherwise

Formulas with “if's” are messy; can we blend more smoothly?
Yes, many possibilities. ldea 1:

L($1,le 10) = 211 1ifi(z1 | 0) + 212 - T2 fo(21 | 0)

|dea 2 (Better):
L(x1,215 | 0) = (mfi(er [0)7 - (rofala1 [ 0))72



Complete Data
Likelihood

Recall:

o 1 if 1 drawn from f;
“177 1 0 otherwise

so, correspondingly,

. 7-1]81(371 | 9) If 211 = 1
Lan,z1510) = { Tofa(x1 | @) otherwise

Formulas with “if's” are messy; can we blend more smoothly?
Yes, many possibilities. ldea 1:

L(Cb’bzlj | 0) = 211 7ifi(z1 | 0) + 212 T2 fo(x1 | 0)

|dea 2 (Better):
L(z1,215 | 0) = (mfi(@ | 0))™" - (12 fo(e [ 0))72

|

Why is this better? How will this behave differently when we take the log?




M-step:
Find 8 maximizing E(log(Likelihood))
(For simplicity, assume 01 =02 =0;7, =70 = .5 :/T)J

A (T3 —
L(Z,Z2|0) = H exp | — Z 2] 202‘7
1<i<n 1<j<2 <\,>

1 )2
Ellog L(#,7 | 0) = E Z log 7 — 510g27m2 B Z o (2 20/;])
| 1<i<n 1<5<2

1 (i — py)*
Z log T — 5 log 2mo? — Z Elz;;] 4

. : 2072
1<i<n 1<5<2

Find 6§ maximizing this as before, using E/|z;,] found in E-step. Result:

pi => i Elzijlei/ >, Elzij] | (intuit: avg, weighted by subpop prob)

41




2 Component Mixture

O

mul

-20.00

mu2

6.00

z11

z21

z31

z41

z51

x1 -6
x2 -5
x3 -4
x4 0
x5 4
x6 5
x7 6

261

z71

Essentially converged in 2 iterations

-0,=1; T=05

5.11E-12
2.61E-23
1.33E-34
9.09E-80
6.19E-125
3.16E-136
1.62E-147

1.00E+00
1.00E+00
9.98E-01
1.52E-08
5.75E-19
1.43E-21
3.53E-24

1.00E+00
1.00E+00
1.00E+00
4.11E-03
2.64E-18
4.20E-22
6.69E-26

-4.99
3.75
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Applications

Clustering is a remarkably successful exploratory data
analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it
Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the
visible data

EM is extremely widely used for “hidden-data’ problems
Hidden Markov Models
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EM Summary

Fundamentally a maximum likelihood parameter
estimation problem

Useful if hidden data, and if analysis is more
tractable when 0/1 hidden data z known

Iterate:
E-step: estimate E(z) for each z, given 0
M-step: estimate O maximizing E(log likelihood)
given E(z) [where “E(logL)” is wrt random z ~ E(z) = p(z=1)]
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EM lIssues

Under mild assumptions, EM is guaranteed to
increase likelihood with every E-M iteration,
hence will converge.

But it may converge to a local, not global, max.
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often
applied to problems (including clustering,
above) that are NP-hard

Nevertheless, widely used, often effective
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Aside: Maximum Likelihood

-st. and the

=M Algorithm

End of slides on MLE & EM taken from the UW CSE 312 Web*

Portions of the CSE 312 Web may be reprinted or adapted for academic nonprofit purposes, providing the source is accurately quoted and duly credited. The CSE 312 Web: © 1993-2011,

Department of Computer Science and Engineering, University of Washington.



A probabilistic view of RNA-Seq quantification

. assumes
nucleotide known .
. . Independence
fractions transcriptome
of fragments

Pr{F |n,T}=][Pr{f; |n T}

j=1
observed
fragments N
(reads) =1[D_Pritilm}-Pr{f;|t:zu=1}
j=1 i=1
Prob. of selecting Prob. of generating
ti given n fragment f; given that it originates from t;
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probability.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC
bioinformatics 12.1 (2011): 1.
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We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC
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A probabilistic view of RNA-Seq quantification

. assumes
nucleotide kKnown ndenendence
fractions transcriptome P

of fragments

/

N
Pr{F |n,T}= H Pr{f; | n, T} We can safely truncate Pr{ti | n}

T - to O for transcripts where a
j=1 — ) -
observed — fragment doesn’'t map/align.
fragments N (M B
(reads) = 1[D _Priti|n}-[Pr{f;|t: 2 =1}
j=1(=1// T J
Prob. of selecting Prob. of generating
ti given n fragment f; given that it originates from t;
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probability.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC
bioinformatics 12.1 (2011): 1.



A probabilistic view of RNA-Seq quantification
E-step: (what is the "soft assignment” of each read to the
transcripts where it aligns)

O 1EIPfy | Zy = 1)
Y, OPIEOP, | Zy = 1)

nij —

M-step: Given these soft assignments, how abundant is each

transcript?
ﬂ(t+1) _ Ezz qo [Ci]
i N ’

where C; = Z nij

This approach is quite effective. Unfortunately, it's also quite
slow.

Equations adapted from: Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15
February 2010, Pages 493—-500, https://doi.org/10.1093/bioinformatics/btp692
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Gene expression estimation accuracy in simulated data
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From supplementary material of : Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26,
Issue 4, 15 February 2010, Pages 493-500, https://doi.org/10.1093/bioinformatics/btp692
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A probabilistic view of RNA-Seq quantification

We want to find the values of n that maximize this probability.
We can do this (at least locally) using the EM algorithm.

but

This leads to an iterative EM algorithm where each iteration
scales in the total number of alignments in the sample (typically
on the order of ), and typically iterations

\.

Lo F.T) =] > Prts | m)Pr(f|t:)

JEF t,€Q(f)

{

Set of transcripts where f maps/aligns

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC
bioinformatics 12.1 (2011): 1.



Fragment Equivalence Classes

Fragments Transcripts

1  — .,

3 ]

4 —

Mmoo W >

Reads 1 & 3 both map to transcripts B & E
Reads 2 & 4 both map to transcript C

We have 4 reads, but only 2 eq. classes of reads

eq. Label Aux weights
{B,E} wi{B.Elg wiBElg

{C} 2 wiClc

This idea goes quite far back in the RNA-seq literature; at least
to MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



Fragment Equivalence Classes

Fragments Transcripts
1 — A
= B
D — — C
3 | D
4 | E
F

_ wii encodes the “affinity” of class j
Reads 1 & 3 both map to tranSCrlptS B&E to transcript i according to the

Reads 2 & 4 both map to transcript C model. This is P{fj| ti}, aggregated
for all fragments in a class.

We have 4 reads, but only 2 eq. classes of reads

eq. Label Aux weights

{B,E}
{C}

This idea goes quite far back in the RNA-seq literature; at least
to MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.




The number of equivalence classes is small

Yeast Human Chicken
# contigs 7353 107,389 335,377
# samples 6 6 8
Total (paired-end) reads ~36,000,000 ~116,000,000 ~181,402,780
Avg # eq. classes (across samples) 5197 100,535 222,216

The # of equivalence classes grows with the complexity of the
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment
equivalence classes.



This naturally handles different types of multi-mapping
without having to rely on the annotation

(a)
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Figure 2 from Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



This lets us approximate the likelihood efficiently

Approximate this: /\’ sum over all alignments of fragment

cmF) = 1| ZPr (ti | ) Pr(f; | t:)

[ €F 1=1

~— oroduct over all fragments

with this: N4

cmF)~ || > Pr(ti|m)-Pr(f|Ft)

FaeC \ (i,t;)EQ(F9)

K Vsum over all transcripts labeling this eq. class
product over all equivalence classes



Why might Pr(f; | t)) matter?

Consider the following scenario:

isoform A . e :

o, Conditional probabilities can provide
valuable information about origin of a

200bp fragment! Potentially different for

isoform B, each transcript/fragment pair.
...... __

450 bp
fragment
length dist. il Prob of observing a fragment of size ~200 is large

Prob of observing a fragment of size ~450 is small

0 200 300

Many terms can be considered in a general “fragment-transcript agreement” model!.
e.g. position, orientation, alignment path etc.

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017



Optimizing the objective

Estimation of background bias models @ B
: . offline inference
Recomputation of effective lengths [EM or VBEM]
Offline algorithm runs until convergence | \ &

our ML objective has a simple, closed-form update rule in terms of our eq. classes

- 0. weight of ti in eq.
'F\Ec Z<k,tk>€ﬂ(;q) Q{kwk Classq
estimated read count from transcript i

at iteration u+1

we also provide the option to use a variational Bayesian objective instead



Actual RNA-seq protocols are a bit more “involved”

RNA
Extraction selection

PCR Ampli-
ficatio

Single-end Paired-end

CT TAC—-ATACTTG
RE——————

There is substantial potential for biases and deviations from the basic
model — indeed, we see quite a few.

Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the
Expected Fragment Starting-Point and Coverage Profile." Journal of Computational Biology 24.3 (2017): 200-212.



Biases abound in RNA-seq data

Biases in prep & sequencing

can have a significant effecton the
fragments we see: ~_J/

Fragment gC'blaS1_ factor(cbin) [1,34) — [34,68) — [68, 101)
The GC-content of the fragment °

affects the likelihood of sequencing

obs / expected
o i N

Sequence-specific bias?— - ,
seqguences surrounding fragment
affect the likelihood of sequencing 3

Positional bias2—
fragments sequenced non-uniformly
across the body of a transcript -

factor(rowid) A c G

obs / expected
o =

1:Love, Michael |., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript
abundance estimation." bioRxiv (2015): 025767 .

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.



Biases abound in RNA-seq data

1,500 - Read start
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Fragment GC-bias is often the most extreme

Love, M. |., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nature
biotechnology, 34(12), 1287.



Basic idea (1): Modify the “effective length” of a
transcript to account for changes in the sampling

porobabillity. This leac

s to changes In soft-assignment in

EM -> changes in TPM.

Basic idea (2): The effective length of a transcript is the sum
of the bias terms at each position across a transcript. The

bias term at a given

position is simply the

(observed / expected) sampling probability.

The trick is how to define “expected” given only

blased data.



Bias Modeling

Bias correction works by adjusting the effective lengths of the transcripts:
The eftective length becomes the sum of the per-base biases

5 _35‘2 kgfyzq,m byet (tingig +h) % (ti.g) ¥ (tig+k) O (tig + k) b3 (tig+ k)
s A bge gt R) B (6 g) b (t g+ k) by (ti g+ k) by (g + R)

S

Pr{X =}

Fragment GC bias model: Foreground:

Ob ad
Density of fragments with specific GC content, Serve
conditioned on GC fraction at read start/end Background:

Expected given est. abundances

0.4
e

: .

0.25

density

GC-fraction of fragment

0
0 0.5 1.0

GC-fraction

First explored in Love, Michael I., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance
estimation." Nature biotechnology 34.12 (2016): 1287.




Bias Modeling

Bias correction works by adjusting the effective lengths of the transcripts:
The eftective length becomes the sum of the per-base biases

got (tidij + k) by (8yd) % (tisji+ k) D04 (toj + k) b3, (ti,j+F)

G2 2 G TG R B ) B kR B G B B R X
L Foreground:
- ific blas m ™
Seqg-specific bias mode Observed
VLMM for the 10bp window surrounding the 5’ Background:

read start site and the 3’ read start site .
Expected given est. abundances

> Same, but independent
. ; model for 3" end

Add this sequence to training set with weight =
P{f | ti}

*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.



Priming bias is sample & sequence-specific

lllumina
A A .
Dataset
BN\ N, V.
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= Katze
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Trapnell
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Position

Jones, Daniel C., et al. "A new approach to bias correction in RNA-Seq." Bioinformatics 28.7 (2012): 921-928.



Bias Modeling

Bias correction works by adjusting the effective lengths of the transcripts:
The eftective length becomes the sum of the per-base biases

jStiksfiL) bget (tisJ,J + k) bi; (ti,7) bg; (ti,J + k) bz5o/+ (ti,j + k) bz?;:f (ti,J + k)

" . Foreground:
Position bias model*™: obs%rved
Density of 5" and 3’ read start positions — Background:

different models for transcripts of different length Expected given est. abundances

0.4

> >
= =
w w
— (-
D) D o5
0 0

0 0.5 1.0 0 0.5 1.0

relative pos relative pos

*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.




Estimating Posterior Uncertainty



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to
represent the RNA-seq process.

It can be optimized efficiently using e.g. the EM / VBEM algorithm.

but, these efficient optimization algorithms return “point estimates”
of the abundances. That is, there is no notion of how certain we are
in the computed abundance of transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

* Technical variance : If we sequenced the exact same sample
again, we'd get a different set of fragments, and, potentially a
different solution.

* Uncertainty in inference: We are almost never guaranteed to
find a unique, globally optimal result. If we started our
algorithm with ditferent initialization parameters, we might get
a different result.

We're trying to find the best
parameters in a space with 10s to
100s of thousands of dimensions!




One “issue” with maximum likelihood (ML)

If we started here

\ | l
We'd end up here \ Y

We'd end up here

but, if we started here

% h

https://commons.wikimedia.org/wiki/File:L ocal_search_attraction_basins.png (CC BY-SA 3.0)



https://commons.wikimedia.org/wiki/File:Local_search_attraction_basins.png

Assessing Uncertainty
There are a few ways to address this “issue”

Do a fully Bayesian inference?:
Infer the entire posterior distribution of parameters, not just a ML
estimate (e.g. using MCMC) — too slow!

J Posterior Gibbs Sampling?2:3:
Starting from our ML estimate, do MCMC sampling to explore
how parameters vary — it our ML estimate is good, this can be made
quite fast.

Bootstrap Sampling4:
Resample (from range-factorized equivalence class counts) with
replacement, and re-run the ML estimate for each sample. This can
be made reasonably fast.

v

1: BitSeq (with MCMC) actually does this. It's very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying
differentially expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.]

2: RSEM has the ability to do this, and it seems to work well, but each sample scales in the # of reads. [Li, Bo, and Colin N. Dewey. "RSEM: accurate
transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 (2011): 1.]

3: MMSEQ can perform Gibbs sampling over shared variables (i.e. equiv classes), producing estimates from the mean of the posterior dist.Turro,
Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.

4: |soDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based differential gene
expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first made practical / fast in kallisto by
doing the bootstrapping over equivalence classes.



A few ways to implement Gibbs Sampling for this problem
The model of MMSeq

Xt | 1y ~ Pois(bs; M 11), (12)

ug ~ Gam(a, B). (13)

The full conditionals are:

M M
{Xiv"-’Xit}H/Jv---’ /lt}’ ki ~ Mlllt[ ki’ u‘ul ln'un ], (]_45)

ZtMitIJt ZtMit#t

( )
1 [{X g1 X 1y} ~ Gam a+2Xit,ﬁ+blt . (15)
\ t J

Again, the s; are not needed as they are absent from
the full conditionals.

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq

P(1,0,0°", R) = Cat(I,,|¢n), (10)
Ono = P(r,|noise)(1 — 9‘1’(:t)/Z,,(1¢),
m % 0; Gpm = P(1rp|1,)0m0% | ZL9)
P(8|I,6%" R) = Dir(0|(a™" + C1,...,a%" 4+ Cy)), (11)
P(0°'|1,0, R) = Beta(0**|a®" + N — Cy, 3% + Cp), (12)
Crn = Yopy8(In = m).

[Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying differentially expressed transcripts from RNA-seq data with biological variation."
Bioinformatics 28.13 (2012): 1721-1728.]



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq (collapsed sampler)

P(I,|I"™ R) = Cat(I,|¢X),
650 = P(ry|noise) (8% + C§ ™) /28",

* ac —n ad”-l-cy(,,,_n) *
m # 0; 6y, = P(ral|1n) (" + Cg— )) (](\Iadi«rthi_n)))/Z?(q’Qb )’

m

U™ =304, 0(1; > 0)

with 24" being a constant normalising ¢,,* to sum up to 1, and a®" = 1, a%t = 2, Bt =

[Glaus, Peter, Antti Honkela, and Magnus Rattray. "Identifying differentially expressed transcripts from RNA-seq data with biological variation."
Bioinformatics 28.13 (2012): 1721-1728.]

2.



This uncertainty matters
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Figure 2.10: Posterior distribution of expression levels of three tran-
scripts of gene Q6ZMZ0. The posterior distribution is represented in form of
a histogram of expression samples converted into Log RPKM expression measure.
The dashed lines mark the mean expression for each transcript.

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters
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(a) Transcript sequence profile.
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(b) Splice variant model.
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Figure 2.12: Exon model of transcripts of gene Q6ZMZO0. (a) transcript
sequence profile obtained from the UCSC genome browser (Kuhn et al., 2013). In
this annotation, transcript ucO01bwm.3 has different 3’ untranslated region and
transcript uc010oho.1 has extra nucleotides at the end of second exon. As the
second change cannot be distinguished in the UCSC genome browser diagram,
we provide schematic splice variant model highlighting the differences (b).
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*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.
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This uncertainty matters

We observe considerably increased variance due to read
mapping ambiguity

led
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If we know this increased uncertainty, we can propagate it &
use it in downstream analysis (differential expression)!

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



