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Assembly data is big

For very large datasets, even atter filtering, a hash
table over all k-mers may be too big.

Why is a hash table big?

How can we do better?

What if we just want to know “it” a k-mer is present?

What if we just wanted “"approximate” occurrence?



Bloom Filters

Originally designed to answer probabilistic membership
gueries:

s element e in my set 57?7
If yes, always say yes

If no, say no with large probability

False positives can happen; talse negatives cannot.



Bloom Filters

For a set of size N, store an array of M bits

Use k different hash functions, {ho, ..., hk-1}

To insert e, set Alhi(e)] = 1forO<i<Kk

To query for e, check if Alhi(e)] = 1for0O < i <K
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Bloom Filters

f hash functions are good and sufticiently
independent, then the probability of false positives is
ow and controllable.

How low?
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False Positives

Let g be the fraction of the m-bits which remain as O after n
iInsertions.

The probability that a randomly chosen bitis 1 1s 1-q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-g)k

We can derive a formula for the expected value of q,
for a filter of m bits, after n insertions with k different hash

functions:

Elg] = (1 - 1/m)x

*analysis of Mitzenmacher and Upfal



False Positives

Mitzenmacher & Untal used the Azuma-Hoeftding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

A \?

Pr(lg — Bl = ) < 2exp(—2—)

That is, the random realizations of g are highly
concentrated around E[qg], which yields a false positive
prob of:

1 kn\ ¥ .
ZPT )(1—1)" (1E[Q])k(1{1m} ) ~ (1 — e )k

*analysis of Mitzenmacher and Upfal



False Positives
ZPr 1_t (1_E[Q])k — (1 {1— 1}%) ~ (1—6_%”)k

m

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

=(m/n)In2 = 2k=0.6185 mn

We can then compute the false positive prob

p=(1—e (HM2E)(22)
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False Positives
ZPr (1 —)" ~ (1-E[q))" = (1 {1— 1}]%) R (1—6_%”)/%

m

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

(K> (min)In2 = 2%~ 0.6185 ™
We can then compute the false positive prob

p=(1- o~ (% 1In 2)%)(% In2) __ given an expected

# elems
m
Inp = ——(In2)? and a desired
n /false positive rate
by (6D
m we can compute
(In2)? the optimal size and

/

# of has functions



Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be usetul for representing
a De Bruijn graph?

T
L ~

A given (k-1)-mer can only have 2*|2| neighbors;
2| incoming and |2| outgoing neighbors — for
genomes |2| = 4

O navigate in the De Bruijn graph, we can simply
guery all possible successors, and see which are
actually present.



Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing a
De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our
data set, and say | give you one k-mer that is truly present.

We now have a “navigational” representation of the
De Bruijn graph (can return the set of neighbors of a
node, but not select/iterate over nodes); why?



Bloom Filters & De Bruijn Graphs

But, a Bloom filter still has false-positives, right??

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless datastructure
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce
the concept of “cascading” Bloom filters



First, some bounds
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We use the term membership data structure to refer to a way of representing a dBG and answering k-mer
membership queries. We can view this as a pair of algorithms: (CONST, MEMB). The CONST algorithm takes a
set of k-mers S (i.e., a dBG) and outputs a bit string. We call CONST a constructor, since it constructs a
representation of a dBG. The MEMB algorithm takes as input a bit string and a k-mer x and outputs true or
false. Intuitively, MEMB takes a representation of a dBG created by coNsT and outputs whether a given k-
mer is present. Formally, we require that for all x € =¥, MEMB(CONST(S), x) is true if and only if x € S.

An NDS i1s a pair of algorithms, CONST and NBR. As
before, CONST takes a set of k-mers and outputs a bit string. NBR takes a bit string and a k-mer and outputs a
set of k-mers. The algorithms must satisfy that for every dBG § and a k-mer x € §, NBR(CONST(S),
x) = ext(x) N S. Note that if x¢ S, then the behavior of NBR(CONST(S), x) is undefined. We observe that a

membership data structure immediately implies an NDS because an NBR query can be reduced to eight
MEMB queries.

In this section, we prove that a navigational data structure on de Bruijn graphs needs at least 3.24 bits per
k-mer to represent the graph:

Theorem 1. Consider an arbitrary NDS and let CONST be its constructor. For any 0 < € < 1, there
exists a k and x S X* such that |coNsT(x)| > |x| - (¢ — €), where ¢ = 8 — 31g3 ~ 3.25.



Critical False Positives
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|dea of Chkhi and Rizk

Assume we want to represent specific set TO of k-mers
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true
k-mers) is much smaller than the set of all false positives and
can be stored explicitly

Storing B1 and T1 is much more space efficient that other
exact methods for storing TO. Membership of w in TO is tested
by first querying B1, and if w € B1, check that it is notin T1.

* slide courtesy of Salikhov, Sacomoto & Kucherov



/ T false positives of B, \
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» Represent T, by Bloom filter B,

* slide courtesy of Salikhov, Sacomoto & Kucherov



/ TO ~ false positives of B, \
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» Represent T, by Bloom filter B,

» Compute T, (‘critical false positives’) and represent it e.g.
by a hash table

* slide courtesy of Salikhov, Sacomoto & Kucherov



false positives of B, \

N /

» Represent T, by Bloom filter B,

» Compute T, (‘critical false positives’) and represent it e.g.
by a hash table

» Result (example): 13.2 bits/node for k=27 (of which 11.1
bits for B, and 2.1 bits for T,)

* slide courtesy of Salikhov, Sacomoto & Kucherov



Improving on Chikhi and Rizk’s method

» Main idea: iteratively apply the same construction to T i.e.
encode T, by a Bloom filter B, and set of ‘false-false
positives’ T, then apply this to T, etc.

» = cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto & Kucherov



* slide courtesy of Salikhov, Sacomoto & Kucherov



/ TO ~ false positives of B, \
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» further encode T, via a Bloom filter B, and set T,, where
T,& T, is the set of k-mers stored in B, by mistake
(‘false? positives’)

* slide courtesy of Salikhov, Sacomoto & Kucherov
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false positives of B, \

/

» further encode T, via a Bloom filter B, and set T, where

[, T, is the set of k-mers stored in B, by mistake

(‘false? positives’)

» iterate the construction on T,

» we obtain a sequence of sets T, T, T,, T3, ... encode by
Bloom filters B,, B,, B3, B, ... respectively

» T,2T,2T,2...,T,2T,2T,2

* slide courtesy of Salikhov, Sacomoto & Kucherov



false positives of B, \

N /

Lemma [correctness]: For a k-mer w, consider the smallest i such
that w&B,, . Then wE T, if i is odd and waT, if i is even.

if w&B, then wd T,

if weB,, but wdB, then wET,

if weB,, wEB,, but wiB; then weT,
etc.

vV VvV VvV Vv

* slide courtesy of Salikhov, Sacomoto & Kucherov



Assuming infinite number of filters

Let N=|T,| and r=m.n. is the same for every B.. Then the
total size is

N + 6rNc" + rNc + 6rNc2 + rNc2 +... =N(1+6¢") —

l1-c

r

|B4] B, B3] Byl |Bs|

The minimum is achieved for r=5.464, which yields the
memory consumption of 8.45 bits/node

* slide courtesy of Salikhov, Sacomoto & Kucherov



Infinity ditficult to deal with ;)

- In practice we will store only a small finite number of filters
B,, B,,..., B, together with the set T, stored explicitely

- =1 - Chkhi&Rizk’s method

- The estimation should be adjusted, optimal value of r has to be
updated, example for t=4

k | optimal r | bits per k-mer

16 | 5.776737 8.000654
32 | 6.048557 8.664086
64 | 6.398529 8.824496
128 | 6.819496 9.045435

Table: Estimations for t=4. Optimal r and
corresponding memory consumption

* slide courtesy of Salikhov, Sacomoto & Kucherov



Compared to Chikhi&Rizk’s method

k “Optimal” (infinite) Cascading Bloom Filter | Data structure
Cascading Bloom Filter with t = 4 of Chikhi & Rizk
16 8.45 8.555654 12.0785
32 8.45 8.664086 13.5185
64 8.45 8.824496 14.9585
128 8.45 9.045435 16.3985

Table: Space (bits/node) compared to Chikhi&Rizk
for t=4 and different values of k.

* slide courtesy of Salikhov, Sacomoto & Kucherov



We can cut down a bit more ...

- Rather than using the same r for all filters B, B,..., we
can use different properly chosen coefficients r,r, ...

- This allows saving another 0.2 — 0.4 bits/k-mer

* slide courtesy of Salikhov, Sacomoto & Kucherov



Experiments I: E.Coli, varying k

- 10M E.Coli reads of 100bp

- 3 versions compared: 1 Bloom (=Chikhi&Rizk), 2
Bloom (t=2) and 4 Bloom (f=4)
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Experiments II: Human dataset

- 564M Human reads of 100bp (~17X coverage)

Method 1 Bloom 2 Bloom 4 Bloom
Construction time (s) 40160.7 43362.8 44300.7
Traversal time (s) 46596.5 35909.3 34177.2
r (bits) 11.10 8.10 6.56
B; =3250.95 | B; =2372.51 | B; =1921.20
Bloom filters size (MB) B2 = 292.6 B2 = 496.92
B3 = 83.39
By = 21.57
False positive table size (MB) Th = 545.94 1> = 370.96 Ty = 24.07
Total size (MB) 3796.89 2524.12 2547.15
Size (bits/k-mer) 12.96 10.37 8.70

* slide courtesy of Salikhov, Sacomoto & Kucherov




Experiments I (cont)
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Efficiently enumerating cHP

Algorithm 1 Constant-memory enumeration of critical
false positives

1: Input: The set S of all nodes in the graph, the Bloom
filter constructed from S, the maximum number M
of elements in each partition (determines memory
usage)

NOte: Requires having 2: Output: The set cFP

3: Store on disk the set P of extensions of S for which

the fUH set on diSk’ the Bloom filter answers yes

: 4: Free the Bloom filter from memory
and being able to 5: Dy < P
" 6: i «<— 0
make mu |t| p |.e passes 7: while end of S is not reached do
over . 8 P10

9: while |P;] < Mdo
10: P; < P;U{next k-mer in S}
11:  for each k-mer m in D; do
12: if m ¢ P; then
13: Diy1 < Djt1 U {m}

14:  Delete D;, P;
15: I <—i+1
16: cFP <« D;

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22



https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Bloom filters & De Bruijn Graphs

S0, we can make very small representation of the dBG.
But it's navigational! We can also make them:
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Other AMQs (the CQF)

Approximate Multiset Representation occupieds

runends
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Works based on quotienting™ & fingerprinting keys
Let k be a key and h(k) a p-bit hash value
h(k)

I —
p-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



Other AMQs (the CQF)
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Other AMQs (the CQF)

Approximate Multiset Representation occupieds § ;
remainders h1(f)
Works based on quotienting™ & fingerprinting keys

array of size 29r-bit slots
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q-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



The CQF

Approximate Multiset Representation

Works based on guotienting & fingerprinting keyé
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runends

remainders

5 6 7
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Careful encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select leads to a fast,

cache-friendly data structure
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Other efficient representations as well
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In addition to the theoretical bounds, this paper
introduced an algorithm for constructing the contigs of
the compacted dBG efficiently (bcalm), and an
efficient representation based on building the FM-
index over these contigs (dbgFM).
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End of Semester FAQ

1. When is the final?
* Thurs. May. 14 (8-10AM)

2. Where is the final?
- It will be made available on ELMS. | am working to optimize the
format.

3. What content will be on the final?
. Technically. blo f " torial

 The final will cover content we have covered since the midterm

4. What will the format of the exam be?
- Same as the midterm. Short answer & longer-form “thinking”
questions. The final will not be proportionally longer —you will
have more time per-question than the midterm.

5. How can | prepare for the final?

- Go over the lectures, go over your projects, go over the relevant
chapters in the book, google about material you still don’t get,
ask us questions on piazza. STUDY AND BE COMFORTABLE
WITH DYNAMIC PROGRAMMING!



End of Semester FAQ

6. What grade will | get?
- | don’t know (yet)
* The class will be curved so that the median grade is a B, with
+/- grades going in ~3-4 point increments from there.
* The P/F system for the semester is OPT-OUT, if you don’t opt-
outyougetaPorF
- A P is anything D- or above

7. Other questions?



What we didn’t cover.

Most of bioinformatics and computational biology:

e all of “long read” technology and method
development

* metagenomics

* biological network analysis

o ‘“systems” biology (e.g. regulatory inference)

* biostatistics and statistical interpretation of
genomics results

* modern approaches of machine learning in
bioinformatics (deep learning)

* much, much more.



