
Bitvector Rank & Select: 
Primitives of succinct 

data structures



Thinking theoretically about data structure size

https://en.wikipedia.org/wiki/Succinct_data_structure

Assume that storing some data, in an information-theoretically 
optimal manner, requires Z bits

Representation of this data is:

Implicit: Z + O(1) bits

Succinct: Z + o(Z) bits

Compact: O(Z) bits

Only a constant size larger than the theoretical minimum

Z bits, plus some term strictly smaller than Z bits

On the order of Z bits (grows linearly in Z)

https://en.wikipedia.org/wiki/Succinct_data_structure


Thinking theoretically about data structure size

*Jacobson, G. J (1988). Succinct static data structures (Ph.D.). Pittsburgh, PA: Carnegie Mellon University.

The idea of succinct data structures was first introduced by 
Jacobson in his thesis “Succinct static data structures”* 

In this thesis, among other things, he introduced succinct 
representations of trees and graphs that could be efficiently 
navigated.

As data sizes grow large, data structures that consume a lot of 
extra space become increasingly less feasible and so succinct 
data structures become increasingly important.

The rank and select operations become the basic building 
blocks of succinct data structures.



credit to Simon J. Puglisi, University of Helsinki 

Slides for the following taken from: 
https://www.cs.helsinki.fi/u/puglisi/dct2015/slides10.pdf

https://www.cs.helsinki.fi/u/puglisi/dct2015/slides10.pdf


Succinct Data Structures"

•  Succinct data structure"
= succinct representation of data + a succinct index"

•  (usually static)"

•  High-level goal: reduce space so the data structure might fit in 
RAM and therefore be faster to use"

•  Examples"
–  Sets"
–  Trees, graphs"
–  Strings"
–  Permutations, functions"

credit to Simon J. Puglisi, University of Helsinki 



Succinct Representation"

•  A representation of data whose size (roughly) matches the 
information-theoretic lower bound"

•  If the input is taken from L distinct possible inputs, then its 
information-theoretic lower bound is ceil(log L) bits"
–  To be considered succinct a data structure must use:"
" "ceil(logL) + o(logL) bits"

•  Example: a lower bound for a set S, subset of {1,2,…,n}"
–  log(2n) = n bits"
–  n = 3 we have 8 distinct sets… so d.s. will need at least 3 bits"
"Ø"
"{1} "{2} "{3}"
"{1,2} "{1,3} "{2,3}"
"{1,2,3}"

credit to Simon J. Puglisi, University of Helsinki 



•  Auxiliary data structure to support queries on the succinct 
representation"

•  Size: o(logL) bits"

•  The index should allow queries/operations on the succinct 
representation in (almost) the same time complexity as using 
a conventional data structure"
–  This is the aim anyway"

•  Computational model is the word RAM"
–  Assume word length w = loglogL"
–  (this is the same pointer size as conventional data structures)"
–  read/write w bits of memory in O(1) time"
–  arithmetic/logical operations on w bit numbers take O(1) time"
–  +,-,*,/,log,&,|,!,>>,<<"

Succinct Index"

credit to Simon J. Puglisi, University of Helsinki 



Binary rank and select!

•  The ability to answer rank and select queries over bit vectors 
(binary strings, bit arrays) is essential for implementing 
succinct data structures"

•  Given a binary string B[1..n]"
–  rankB(i) returns the number of 1 bits in B[1..i]"
–  selectB(i) returns the position of the ith 1 bit in B"

credit to Simon J. Puglisi, University of Helsinki 



Naïve rank 

•  To answer rank(i) scan B[1..i] and count 1-bits 

•  Simple but slow 
–  O(i) time = O(n) time in the worst case 

•  How can we do better? 
–  After all, what are we? 

credit to Simon J. Puglisi, University of Helsinki 



(Slightly) Less naïve rank 

•  A[i] = rank(i) 
–  Now rank(i) takes constant time – just an array lookup! 

•  Drawback: 
–  A requires nlogn bits - logn times the size of B – not succinct! 
–  We’d like a solution with O(1) queries and o(n) extra space… 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

A 1 1 1 2 2 3 4 5 5 6 6 6 7 7 8 8 

•  Store an table A[1..n], containing the rank answers 

credit to Simon J. Puglisi, University of Helsinki 



We want O(1) queries with o(n) extra bits… 

•  General approach will be to precompute some tables 

•  Each table stores part of the answer to every query 
–  For any given query, we can extract needed parts in O(1) time 
–  The total size of the tables is o(n) bits 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

•  Premise: 
•  Can read O(logn) bits into an integer in range 1..n in O(1) time 
•  However, to inspect each of those bits take O(logn) time 

credit to Simon J. Puglisi, University of Helsinki 



Tables : Superblocks 

•  Divide B into superblocks of size s = log2n/2 = 4*4/2 = 8 

•  Build a small table Rs containing ranks for only some 
positions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

0 1 

Rs 0 5 

•  Store in Rs[j] = rankB(j*s), for all 0 ≤ j < n/s 

credit to Simon J. Puglisi, University of Helsinki 



Tables : Blocks 

•  Divide each superblock into blocks of size b = logn/2 = 2 

•  Build a table Rb which contains the rank from the start 
of each block to the start of its superblock 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

0 1 

Rs 0 5 

•  Store Rb[k/b] = rankB(k*s) - rankB(j*s), for all 0 ≤ k < n/b 

0 1 2 3 0 1 2 3 

Rb 0 1 2 3 0 1 1 2 

credit to Simon J. Puglisi, University of Helsinki 



Intermission 

•  What we have so far (tables Rs and Rb) almost gets us 
the answer we’re after 

•  rankB(i) ≈ Rs[i/s] + Rb[i/b] 
•  Just need to answer in-block queries in O(1) time 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

0 1 

Rs 0 5 

0 1 2 3 0 1 2 3 

Rb 0 1 2 3 0 1 1 2 

credit to Simon J. Puglisi, University of Helsinki 



Tables : Resolving in-block queries 

•  Solution? Use another table! 
 
•  Blocks have size b = log2n/2 

–  There are 2b such blocks possible 
–  In each block there are b possible rank queries 
–  Each answer (relative to the block) is in the range 1..b 

Type 0 1 rank(0) rank(1) 

0 0 0 0 0 

1 0 1 0 1 

2 1 0 1 1 

3 1 1 1 2 

Rp 

credit to Simon J. Puglisi, University of Helsinki 



Final Data Structure 

Type 0 1 rank(0) rank(1) 

0 0 0 0 0 
1 0 1 0 1 
2 1 0 1 1 
3 1 1 1 2 

Rp 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

0 1 

Rs 0 5 

0 1 2 3 0 1 2 3 

Rb 0 1 2 3 0 1 1 2 

credit to Simon J. Puglisi, University of Helsinki 



Size of table for within-block queries 

•  Blocks have size b = log2n/2 
–  There are 2b such blocks possible 
–  In each block there are b possible rank queries 
–  Each answer (relative to the block) is in the range 1..b 

•  Therefore size of Rp, the in-block data structure is 
–  2b * b * logb = n1/2*logn*loglogn/2 bits = o(n) bits 

Type 0 1 rank(0) rank(1) 

0 0 0 0 0 

1 0 1 0 1 

2 1 0 1 1 

3 1 1 1 2 

Rp 

credit to Simon J. Puglisi, University of Helsinki 



Summing up sizes… 

•  The size of Rs, the superblock data structure is 
–  2n/log2n superblocks, each of size logn bits 
–  (n/log2n)*logn = 2n/logn bits = o(n) bits 

•  The size of Rb, the block data structure is 
–  2n/logn blocks, each of size loglogn bits 
–  2nloglogn/logn bits = o(n) bits 

•  Rs + Rb + Rp = o(n) extra bits for O(1) time rank queries 
–  It is possible to construct this data structure in O(n) time 

credit to Simon J. Puglisi, University of Helsinki 



Variations 

•  Just store Rs + use manual counting within superblocks 
–  Saves space for Rb and Rp, takes time O(log2n) per query 

•  Store Rs and Rb + use manual counting within blocks 
–  Saves only space for Rp, takes time O(logn) per query 

•  Use different superblock & block sizes 
–  No more theoretical guarantees, but…  
–  Perhaps faster in practice: blocks that are multiples of word 

sizes (32-bits) can be faster to handle 

credit to Simon J. Puglisi, University of Helsinki 



Summary of rank!

•  Rank index takes O(nloglogn/logn) = o(n) bits so we use n + 
o(n) overall and can answer queries in O(1) time"

•  While it is sublinear, we’d still like the o(n) term to be small "
–  Best is by Patrastcu: O(n/logkn) bits, O(k) time queries"

•  Dynamic solutions exist"
–  Queries no longer constant: O(logn/loglogn) time (Raman et al.)"

credit to Simon J. Puglisi, University of Helsinki 



Relationship to select(i) 

•  We can use our solution to rank to get a (fairly) 
efficient solution to select(i), with this observation: 

•  If rank(n/2) > i, then the ith 1-bit is in B[1..n/2] 
•  Otherwise it is in B[n/2+1..n] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

B 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 

rankB(8) = 5 

rankB(4) = 2 

selectB(3) 

credit to Simon J. Puglisi, University of Helsinki 



Relationship to select(i) 

•  Applying this idea recursively to arrive at select(i) 
•  O(log2n) time, o(n) space  

•  O(1) time, o(n) space solutions for select also exist 
•  Slightly more complicated than O(1) rank 
•  (Munro and Clark) 

•  Similar variations as we discussed with rank (trading 
space for query time) are also possible  

credit to Simon J. Puglisi, University of Helsinki 



These rank & select operations work over a 
binary alphabet — can be extended

Grossi, Roberto, Ankur Gupta, and Jeffrey Scott Vitter. "High-order entropy-compressed text indexes." Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete 
algorithms. Society for Industrial and Applied Mathematics, 2003.

Introduces the idea of the wavelet tree, a versatile index 
that can be extended to arbitrary alphabets.  We’ll discuss 
the simplest of variants according to the exposition of:



Preliminaries

S[1,n] = s1s2 … sn is a sequence of symbols where si in Σ

Σ = [1 … σ] is an alphabet of symbols

Representing S requires n * ⌈lg σ⌉  = n * lg σ + O(n) bits.

Wavelet tree: balanced binary tree with σ nodes, where each 
subtree is also a wavelet tree (i.e. it is recursive)



Preliminaries



Preliminaries
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Example: Rank
Consider asking for the rank of this “a”

111010101111



Example: Rank
Consider asking for the rank of this “a”

how many _,a,b occur up to (and including) 
this one? Count 0’s at this level — 8

111010101111



Example: Rank
Consider asking for the rank of this “a”

how many _,a,b occur up to (and including) 
this one? Count 0’s at this level — 8

So that maps to 8th 
character at this level

111010101111



Example: Rank
Consider asking for the rank of this “a”

Count 0’s at this 
level — 7

So that maps to 8th 
character at this level

111010101111



Example: Rank
Consider asking for the rank of this “a”

So that maps to 
7th character at 
this level 111010101111



Example: Rank
Consider asking for the rank of this “a”

So that maps to 
5th character at 
this level

Count 1’s at this 
level — 5

111010101111



Example: Rank
Consider asking for the rank of this “a”

This is the 5th ‘a’ 
— Ranka(S, 11) = 5

111010101111

If we are 1-indexing



Example: Rank
This procedure turns rank for any character in the alphabet into 

lg σ rank calculations over bitvectors.

We can answer rank queries for an arbitrary character in  
lg σ * O(1) = O(lg σ) time.  For small, constant alphabets, through 
the magic of Big-O, this is constant time. :)

111010101111



Example: Select
Select the 3rd “l” (at what index does it occur?)

111010101111



Example: SelectExample: Select

Here, we start at the bottom of the tree and work up.

Where does this”l” go at this 
level? It’s the 3rd 1

Select the 3rd “l” (at what index does it occur?)

3

3

111010101111



Example: SelectExample: Select

Here, we start at the bottom of the tree and work up.

Where does this”l” go at this 
level? It’s the 3rd 0

Select the 3rd “l” (at what index does it occur?)

3

3

4

111010101111



Example: SelectExample: Select

Here, we start at the bottom of the tree and work up.

Where does this”l” go at this 
level? It’s the 4th 1

Select the 3rd “l” (at what index does it occur?)

3

3

4

14

111010101111



Example: Select
This procedure turns select for any character in the alphabet 

into lg σ select calculations over bitvectors.

We can answer select queries for an arbitrary character in  
lg σ * O(1) = O(lg σ) time.  For small, constant alphabets, through 
the magic of Big-O, this is constant time. :)

111010101111



Succinct Data Structures
We have only scratched the surface on what is possible with 
rank & select and succinct data structures in general.

However, we’ll assume familiarity with rank and select moving 
forward as we talk about data structures in Comp Bio that use 
them.

Gonzalo Navarro alone publishes 14-24 papers / year in this 
field :):

A google search on Gonzalo, and succinct data structures will 
send you down a wonderful rabbit-hole; I recommend you try it!



Some practical advice
Succinct data structure papers tend to be quite theoretical (go 
figure!).

Luckily, there is a go-to library for implementation of these ideas.



Some practical advice
Succinct data structure papers tend to be quite theoretical (go 
figure!).

Luckily, there is a go-to library for implementation of these ideas.

Provides a modern, modular C++ implementation of many 
different succinct data structures.



Some practical advice

Create an FM-index over some text?



Some practical advice

Perform rank queries over a bit vector?



Some practical advice

How about select0



Some practical advice
You get the idea! An incredibly powerful library, at your fingertips.



Some practical advice
You get the idea! An incredibly powerful library, at your fingertips.


