Bitvector Rank & Select:
Primitives of succinct
data structures



Thinking theoretically about data structure size

Assume that storing some data, in an information-theoretically
optimal manner, requires Z bits

Representation of this data is:

Implicit: Z + O(1) bits
Only a constant size larger than the theoretical minimum

Succinct: Z + o(Z) bits
Z bits, plus some term strictly smaller than Z bits
Compact: O(Z) bits

On the order of Z bits (grows linearly in 2)

https://en.wikipedia.org/wiki/Succinct_data_structure



https://en.wikipedia.org/wiki/Succinct_data_structure

Thinking theoretically about data structure size

The idea of succinct data structures was first introduced by
Jacobson in his thesis “Succinct static data structures™

In this thesis, among other things, he introduced succinct
representations of trees and graphs that could be efficiently
navigated.

As data sizes grow large, data structures that consume a lot of
extra space become increasingly less feasible and so succinct
data structures become increasingly important.

The rank and select operations become the basic building
blocks of succinct data structures.

*Jacobson, G. J (1988). Succinct static data structures (Ph.D.). Pittsburgh, PA: Carnegie Mellon University.




Slides for the following taken from:
hitps://www.cs.helsinki.fi/u/puglisi/dct?2015/slides10.pdf

credit to Simon . Puglisi, University of Helsinki


https://www.cs.helsinki.fi/u/puglisi/dct2015/slides10.pdf

Succinct Data Structures

* Succinct data structure
= succinct representation of data + a succinct index

* (usually static)

* High-level goal: reduce space so the data structure might fit in
RAM and therefore be faster to use

* Examples
— Sets
— Trees, graphs
— Strings
— Permutations, functions

credit to Simon J. Puglisi, University of Helsinki



Succinct Representation

* A representation of data whose size (roughly) matches the
information-theoretic lower bound

* If the input is taken from L distinct possible inputs, then its
information-theoretic lower bound is ceil(log L) bits

— To be considered succinct a data structure must use:
ceil(logl) + o(logl) bits

* Example: a lower bound for a set S, subset of {I,2,...,n}
— log(2") = n bits
— n = 3 we have 8 distinct sets... so d.s. will need at least 3 bits

%

Uy 2y 3
2y {13} {23}
{1,2,3}

credit to Simon |. Puglisi, University of Helsinki



Succinct Index

* Auxiliary data structure to support queries on the succinct
representation

* Size: o(logl) bits

* The index should allow queries/operations on the succinct
representation in (almost) the same time complexity as using
a conventional data structure

— This is the aim anyway

* Computational model is the word RAM
— Assume word length w = logloglL
— (this is the same pointer size as conventional data structures)
— read/write w bits of memory in O(1) time
— arithmetic/logical operations on w bit numbers take O(1) time
— +,-%/log,&,|,!,>>,<<

credit to Simon J. Puglisi, University of Helsinki



Binary rank and select

* The ability to answer rank and select queries over bit vectors

(binary strings, bit arrays) is essential for implementing
succinct data structures

* Given a binary string B[1..n]
— rankg(i) returns the number of 1 bits in B[1..i]
— select;(i) returns the position of the it" 1 bit in B

credit to Simon J. Puglisi, University of Helsinki



Naive rank

e To answer rank(i) scan B[1..i] and count 1-bits

e Simple but slow
- O(i) time = O(n) time in the worst case

« How can we do better?
- After all, what are we?

credit to Simon J. Puglisi, University of Helsinki



(Slightly) Less naive rank

e Store an table A[1..n], containing the rank answers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B (1/0/0{1|0{1{11/0(1({0(0}1]0({1]0
A |111(1(22]|3]|4|5|5|6|6|6|7|7|8|8

e A[i] = rank(i)

- Now rank(i) takes constant time - just an array lookup!

 Drawback:
- A requires nlogn bits - logn times the size of B - not succinct!
- We’d like a solution with O(1) queries and o(n) extra space...

credit to Simon |. Puglisi, University of Helsinki



We want O(1) queries with o(n) extra bits...

e General approach will be to precompute some tables

e Each table stores part of the answer to every query

- For any given query, we can extract needed parts in O(1) time
- The total size of the tables is o(n) bits

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B (1/0/0{1|0{1{1|1/0(1({0]0}{1]0(1]0

 Premise:
e (Can read O(logn) bits into an integer in range 1..n in O(1) time
 However, to inspect each of those bits take O(logn) time

credit to Simon |. Puglisi, University of Helsinki



Tables : Superblocks

« Divide B into superblocks of size s = log?n/2 = 4*4/2 = 8

e Build a small table R, containing ranks for only some
positions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
B |1/0/0{1/0{1(1{1/0{1{0/0{1/0|1/0

0 1

0 5

e Store in R [j] = rankg(j*s), for all 0 < j < n/s

credit to Simon |. Puglisi, University of Helsinki



Tables : Blocks

e Divide each superblock into blocks of size b = logn/2 = 2

« Build a table R, which contains the rank from the start
of each block to the start of its superblock

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B |1/0{0{1{0{1{1({1(0(1/0|0|1]{0{1]0

0 1 2 3 0 1 2 3

R, | 0|1 |23 ]0|1]1]2

o Store R [k/b] = rankg(k*s) - rankz(j*s), forall 0 < k < n/b

credit to Simon |. Puglisi, University of Helsinki



Intermission

« What we have so far (tables R, and R,) almost gets us
the answer we’re after

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B (110/0{1/0|1|1}1]0|1]0]0|1]0]1]0

R, | 0| 12|30/ 1]1]2

e rankg(i) = R[i/s] + R [i/b]

e Just need to answer in-block queries in O(1) time

credit to Simon |. Puglisi, University of Helsinki



Tables : Resolving in-block queries

e Solution? Use another table!

» Blocks have size b = log,n/2
- There are 2b such blocks possible
- In each block there are b possible rank queries
- Each answer (relative to the block) is in the range 1..b

Type 0 1 rank(0) rank(1)
0 0|0 0 0

R, 1 0|1 0 1
2 110 1 1
3 11 1 2

credit to Simon J. Puglisi, University of Helsinki



Final Data Structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B (1(0/0(1{0{1{1{1{0{1]0]0|1/0|1/0

Type 0 1 rank(0) rank(1)
0 00 0 0

R, 1 01 0 1
2 110 1 1
3 111 1 2

credit to Simon J. Puglisi, University of Helsinki



Size of table for within-block queries

» Blocks have size b = log,n/2
- There are 2P such blocks possible

- In each block there are b possible rank queries
- Each answer (relative to the block) is in the range 1..b

Type 0 1 rank(0) rank(1)
0 00 0 0

R, 1 01 0 1
2 110 1 1
3 111 1 2

 Therefore size of R, the in-block data structure is
- 2°* b * logb = n'#*logn*loglogn/2 bits = o(n) bits

credit to Simon |. Puglisi, University of Helsinki



Summing up sizes...

« The size of R, the superblock data structure is
- 2n/log?n superblocks, each of size logn bits
- (n/log?n)*logn = 2n/logn bits = o(n) bits

« The size of R, the block data structure is
- 2n/logn blocks, each of size loglogn bits
- 2nloglogn/logn bits = o(n) bits

* R;+R, + R, =0(n) extra bits for O(1) time rank queries
- It is possible to construct this data structure in O(n) time

credit to Simon |. Puglisi, University of Helsinki



Variations

e Just store R, + use manual counting within superblocks
- Saves space for R, and R, takes time O(logn) per query

e Store R, and R, + use manual counting within blocks
- Saves only space for R, takes time O(logn) per query

o Use different superblock & block sizes
- No more theoretical guarantees, but...

- Perhaps faster in practice: blocks that are multiples of word
sizes (32-bits) can be faster to handle

credit to Simon |. Puglisi, University of Helsinki



Summary of rank

* Rank index takes O(nloglogn/logn) = o(n) bits so we use n +
o(n) overall and can answer queries in O(1) time

* While it is sublinear, we’d still like the o(n) term to be small
— Best is by Patrastcu: O(n/logkn) bits, O(k) time queries

* Dynamic solutions exist
— Queries no longer constant: O(logn/loglogn) time (Raman et al.)

credit to Simon |. Puglisi, University of Helsinki



Relationship to select(i)

« We can use our solution to rank to get a (fairly)
efficient solution to select(i), with this observation:

e If rank(n/2) > i, then the it" 1-bit is in B[1..n/2]

e Otherwise it isin B[n/2+1..n]

selecty(3)
1 2 3 9 10 11 12 13 14 15 16
B 11010 0(1/0{0(1(0(1|0

)

rankz(8) = 5
rankz(4) = 2

credit to Simon J. Puglisi, University of Helsinki



Relationship to select(i)

e Applying this idea recursively to arrive at select(i)
e O(log,n) time, o(n) space

e« O(1) time, o(n) space solutions for select also exist
e Slightly more complicated than O(1) rank
e (Munro and Clark)

e Similar variations as we discussed with rank (trading
space for query time) are also possible

Information Systems 73 (2018) 25-34

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Rank and select: Another lesson learned )

Szymon Grabowski*, Marcin Raniszewski

Lodz University of Technology, Institute of Applied Computer Science, Al Politechniki 11, £6dZ 90-924, Poland

credit to Simon |. Puglisi, University of Helsinki



These rank & select operations work over a
binary alphabet — can be extended

High-Order Entropy-Compressed Text Indexes

Roberto Grossi* Ankur Guptal Jeffrey Scott Vitter

Introduces the idea of the wavelet tree, a versatile index
that can be extended to arbitrary alphabets. We’ll discuss
the simplest of variants according to the exposition of:

Wavelet Trees for All *

Gonzalo Navarro

Dept. of Computer Science, University of Chile. gnavarro@dcc.uchile.cl

Grossi, Roberto, Ankur Gupta, and Jeffrey Scott Vitter. "High-order entropy-compressed text indexes." Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2003.



Preliminaries

S[1,n] = s1s2 ... sn is a sequence of symbols where sjin 2
2 =[1 ... 0]is an alphabet of symbols
Representing S requires n * Tlg o1 =n *Ig o + O(n) bits.

Wavelet tree: balanced binary tree with o nodes, where each
subtree is also a wavelet tree (i.e. it is recursive)



Preliminaries

Structure. A wavelet tree [54] for sequence S[1,n| over alphabet [1..0] can be
described recursively, over a sub-alphabet range [a..b] C [1..0]. A wavelet tree
over alphabet [a..b] is a binary balanced tree with b — a + 1 leaves. If a = b,
the tree is just a leaf labeled a. Else it has an internal root node, v,,o:, that
represents S|1,n|. This root stores a bitmap B, __,[1,n| defined as follows: if
Sli] < (a+0b)/2 then B, __.[i] =0, else B,,__.[i]] = 1. We define Sy[1,no| as the
subsequence of S|[1,n| formed by the symbols ¢ < (a+b)/2, and S1[1,n1] as the
subsequence of S[1,n| formed by the symbols ¢ > (a +b)/2. Then, the left child
of Vo0t is a wavelet tree for Sy[1, ng] over alphabet |a..|(a+b)/2]] and the right
child of v,.,,: is a wavelet tree for S1[1,n1] over alphabet [1 + |(a 4+ b)/2]..b].




Preliminaries

alabar _a la _alabarda

01000100010001000110
aaba_a a’ggg;;//////’ \\\\\\\\\\I}llrd
00100000000100 010010
aaa_a_a_aaaa 111d
111@1@101111 /1110\
aaaaaaaaa 111

Fig. 1. A wavelet tree on string S = "alabar a la alabarda”. We draw the spaces as
underscores. The subsequences of S and the subsets of X' labeling the edges are drawn
for illustration purposes; the tree stores only the topology and the bitmaps.



Example: Rank

Consider asking for the rank of this “a”

v
alabar a la alabarda

01000100010001000110
aaba_a a’ggg;;/////// \\\\\\\\\\i}llrd
00100000000100 010010
27N v N
aaa_a_a_aaaa bb 111d rr
1110

111010101111
/\ o/ N
d

aaaaaaaaa 111



Example: Rank

Consider asking for t

how many _,a,b occur up to (and including)
this one? Count O’s at this level — 8

aaa_a_a_aaaa
111010101111

/ N

dddddddadd

ne rank of this “a”

alabar a la _alabarda
01000100010001000110

= T

aaba_a_a aabaa
00100000000100

A

bb

4

lrllrd
010010

N

111d
1110

N

111

rr



Example: Rank

Consider asking for the rank of this “a

how many _,a,b occur up to (and including) alabar a leva alabarda

this one? Count O’s at this level — 8 01000100010001000110
So that maps to 8th aaba_a_a_aabaa 1rllrd
character at this level 00100000000100 010010
/ \ / \
aaa_a_a_aaaa bb 111d rr
1110

111010101111
/ \e o/ N
d

aaaaaaaaa 111



Example: Rank

Consider asking for t

So that maps to 8th

character at this level

Count Q’s at this
level — 7

ddd_d_d_daadad

11101@101111
aaaaaaaaa

bb

ne rank of this “a”

4

\ 4
alabar _a la _alabarda
01000100010001000110

= T

aaba_a_a aabaa
00100000000100

AN

lrllrd
010010

N

111d
1110

N

111

rr



So that maps to
/th character at
this level

Example: Rank

Consider asking for t

ddd_d_d_daadad

111010101111

/ N

dddddddadd

ne rank of this “a”

v
alabar a la alabarda
01000100010001000110

= T

aaba_a a aabaa
00100000000100

N

bb

4

lrllrd
010010

N

111d
1110

N

111

rr



Example: Rank

Consider asking for the rank of this “a”

\ 4
alabar _a la _alabarda

01000100010001000110
aaba_a_a / \lrllrd
00100000000100 010010
g%thst matps tct> aaa_a_a_aaaa bb 111d rr
characteral — 1111010101111 1110

this Ieve,l . / \ ;/ \

Count 1’s at this 23424848484 111
level — 5




Example: Rank

Consider asking for the rank of this “a”

\ 4
alabar _a la _alabarda

01000100010001000110
aaba_a a’ggg;;/////// \\\\\\\\\\I}llrd
00100000000100 010010
27N v N
aaa_a_a_aaaa bb 111d rr
111010101111 1110
7N o/ N
aaaaaaaaa d 111

This is the 5th ‘a’
— Ranka(S, 11) =

If we are 1-indexing



Example: Rank

This procedure turns rank for any character in the alphabet into
lg o rank calculations over bitvectors.

alabar a la_alabarda
01000100010001000110

/ N

aaba_a_a_aabaa lrllrd
00100000000100 010010
27N 47N
aaa_a_a_aaaa bb 111d rr
111010101111 1110
N o/ N
L aaaaaaaaa d 111

We can answer rank queries for an arbitrary character in
lg o * O(1) = O(lg o) time. For small, constant alphabets, through
the magic of Big-0O, this is constant time. ?)



Example: Select

Select the 3rd “I” (at what index does it occur?)

alabar a la alabarda

01000100010001000110
aaba_a a’ggg;;/////// \\\\\\\\\\i}llrd
00100000000100 010010
27N v N
aaa_a_a_aaaa bb 111d rr
1110

111010101111
/\ o/ N
d

aaaaaaaaa 111



Example: Select

Select the 3rd “I” (at what index does it occur?)

alabar a la alabarda
01000100010001000110

T T

lrllrd
010010

L

111d
1110

N

aaba_a_a_aabaa

00100000000100
aaa_a_a_aaaa bb
111@10101111

aaaaaaaaa

Where does this”l” go at this
level? It’s the 3rd 1

Here, we start at the bottom of the tree and work up.




Example: Select

Select the 3rd “I” (at what index does it occur?)

alabar a la alabarda
01000100010001000110

o { \lrllrd Where does this™l” 90 at s
00100000000100 010010 level? It’s the 3rd O
_.a b
3
aaa_a_a_aaaa bb 111d rr
111010101111 1110
/ \ ‘/ \ 3
aaaaaaaaa d 111

Here, we start at the bottom of the tree and work up.



Example: Select

Select the 3rd “I” (at what index does it occur?)

14
Where does this”l” go at this

alabar_a_la_alabarda o 14
01000100010001000110 level? I's the 4th 1
aaba_a a’ggg;;/////// \\\\\\\\\\E}llrd
00100000000100 010010
_.a b
3
aaa_a_a_aaaa bb 111d rr
111010101111 1110
/ AN ‘/ \ 3
aaaaaaaaa d 111

Here, we start at the bottom of the tree and work up.



Example: Select

This procedure turns select for any character in the alphabet
into Ig o select calculations over bitvectors.

alabar a la_alabarda
01000100010001000110

/ N

aaba_a_a_aabaa lrllrd
00100000000100 010010
27N 47N
aaa_a_a_aaaa bb 111d rr
111010101111 1110
N o/ N
L aaaaaaaaa d 111

We can answer select queries for an arbitrary character in
lg o * O(1) = O(lg o) time. For small, constant alphabets, through
the magic of Big-0O, this is constant time. ?)



Succinct Data Structures

We have only scratched the surface on what is possible with
rank & select and succinct data structures in general.

However, we’ll assume familiarity with rank and select moving
forward as we talk about data structures in Comp Bio that use
them.

Gonzalo Navarro alone publishes 14-24 papers / year in this
field :):

2019 (14+10) 2018 (14)

2017 (21) 2016 (19)

A google search on Gonzalo, and succinct data structures will
send you down a wonderful rabbit-hole; | recommend you try it!



Some practical advice

Succinct data structure papers tend to be quite theoretical (go
figurel).

Luckily, there is a go-to library for implementation of these ideas.

simongog / sdsl-lite O watch 119  YStar 1582 @ YFork 243

<> Code Issues 39 Pull requests 18 Projects 0 Wiki Security Insights

All your code in one place

Over 40 million developers use GitHub together to host and review code, project
manage, and build software together across more than 100 million projects.

LN R{Iai{-- See pricing for teams and enterprises

Dismiss

Succinct Data Structure Library 2.0



Some practical advice

Succinct data structure papers tend to be quite theoretical (go
figurel).

Luckily, there is a go-to library for implementation of these ideas.

[ simongog / sdsl-lite @ Wwatch 119  YStar 1582  YFork 243

<> Code Issues 39 Pull requests 18 Projects 0 Wiki Security Insights

All your code in one place

Over 40 million developers use GitHub together to host and review code, project
manage, and build software together across more than 100 million projects.

SELHERIai{-- See pricing for teams and enterprises

Dismiss

Succinct Data Structure Library 2.0

Provides a modern, modular C++ implementation of many
different succinct data structures.



Some practical advice

Create an FM-index over some text?

#include <sdsl/suffix_arrays.hpp>
#include <string>
#include <iostream>

string index_file = string(argv[1])+index_suffix;
csa_wt<wt_huff<rrr_vector<127> >, 512, 1024> fm_index;

if ('load_from_file(fm_index, index_file)) {
ifstream in(argv([1]);

if (!lin) {
cout << "ERROR: File " << argv[1] << " does not exist. Exit." << endl;
return 1;

}

cout << "No index "<<index_file<< " located. Building index now." << endl;
construct(fm_index, argv[1l]l, 1); // generate index
store_to_file(fm_index, index_file); // save it



Some practical advice

Perform rank queries over a bit vector?

#include <iostream>
#include <sdsl/bit_vectors.hpp>

#include <iostrea using namespace std;
. . using namespace sdsl;
#include <sdsl/bi J P

int main()
using namespace s {
bit_vector b = {0,1,0,1,1,1,0,0,0,1,1};
size_t zeros = rank_support_v<0>(&b) (b.size());
bit_vector::select_0_type b_sel(&b);

using namespace S

int main()
{ for (size_t i=1; i <= zeros; ++1i) {
) cout << b_sel(i) << " ";
bit_vector b : }
for (size t i cout << endl;
b[i] = 1; *

rank_support_v<1> b_rank(&b);
for (size_t i=0; i<=b.size(); i+= b.size()/4)

cout << "(" << i << ", " << b_rank(i) << ") ";
cout << endl;



Some practical advice

How about selectg

#include <iostream>
#include <sdsl/bit_vectors.hpp>

using namespace std;
using namespace sdsl;

int main()

{
bit_vector b = {0,1,0,1,1,1,0,0,0,1,1};
size_t zeros = rank_support_v<0>(&b)(b.size());
bit_vector::select_0_type b_sel(&b);

for (size t i=1; i <= zeros; ++i) {
cout << b_sel(i) << " ";
¥

cout << endl;



Some practical advice

sdsl Cheat Sheet

Data structures

The library code is in the sdsl namespace. Either import the
namespace in your program (using namespace sdsl;) or
qualify all identifieres by a sdsl: :-prefix.

Each section corresponds to a header file. The file is
hyperlinked as part of the section heading.

We have two types of data structures in sdsl. Self-contained
and support structures. A support object s can extend a
self-contained object o (e.g. add functionality), but requires
access to o. Support structures contain the substring support
in their class names.

Integer Vectors (IV)

The core of the library is the class int_vector<w>.
Parameter w corresponds to the fixed length of each element
in bits. For w = 8,16, 32,64, 1 the length is fixed during
compile time and the vectors correspond to

std: :vector<uintw_t> resp. std::vector<bool>. If w =0
(default) the length can be set during runtime. Constructor:
int_vector<>(n,x,{), with n equals size, z default integer
value, £ width of integer (has no effect for w > 0).

Public methods: operator[i], size(), width(), data().

Manipulating int_vector<w> v

Method Description
vlil=z Set entry v[i] to z.
v.width(#) Set width to £, if w = 0.

v.resize(n) Resize v to n elements.

Useful methods in namespace sdsl::util:

set_to_value(v,k) Set v[i]=k for each i.

set_to_id(v) Set v[i]=t for each 1.
set_random_bits(v) Set elements to random bits.

mod(v,m) Set v[i]=v[ilmodm for each 1.
bit_compress(v) Gets z =max;v[i] and £=[log(z—1)]+1
and packs the entries in £-bit integers.
Expands the width of each integer to ¢
bits, if £ > v.width().

expand_width(v,f)

Compressed Integer Vectors (CIV)

For a vector v, enc_vector stores the self-delimiting coded
deltas (v[i+1]—v[:]). Fast random access is achieved by
sampling values of v at rate t_dens. Available coder are
coder::elias_delta, coder::elias_gamma, and

coder: :fibonacci.

Class vlc_vector stores each v[i] as self-delimiting codeword.
Samples at rate t_dens are inserted for fast random access.

Class dac_vector stores for each value z the least (t_b — 1)
significant bits plus a bit which is set if > 2°~1, In the latter
case, the process is repeated with z/ = z/20-1,

Bitvectors (BV)

Representations for a bitvector of length n with m set bits.

Class Description Space
bit_vector plain bitvector 64[n/64+1]
bit_vector_il interleaved bitvector ~n(l+64/K)

rrr_vector Hy-compressed bitvector = [log (7’;‘])]
sd_vector sparse bitvector ~ m-(2+log ;)
hyb_vector hybrid bitvector

bit_vector equals int_vector<1> and is therefore dynamic.
Public Methods: operator[i], size(), begin(), end()

Public Types: rank_1_type, select_1_type, select_0_type'.
Each bitvector can be constructed out of a bit_vector object.

Rank Supports (RS)

RSs add rank functionality to BV. Methods rank(z) and
operator (i) return the number of set bits? in the prefix [0..7)
of the supported BV for i € [0, n].

Class Compatible BV ~ +Bits Time
rank_support_v bit_vector 0.25n (1)
rank_support_v5 bit_vector 0.0625n  O(1)
rank_support_scan bit_vector 64 O(n)
rank_support_il bit_vector_il 128 O(1)
rank_support_rrr rrr_vector 80 O(k)
rank_support_sd sd_vector 64 O(log )
rank_support_hyb hyb_vector 64 -

Call util::init_support (rs,bv) to initialize rank structure
rs to bitvector bv. Call rs(i) to get rank(i) = 22;6 bv [k]

Select Supports (SLS)

SLSs add select functionality to BV. Let m be the number of
set bits in BV. Methods select(i) and operator (i) return the
position of the i-th set bit® in BV for i € [1..m].

Class Compatible BV +Bits Time
select_support_mcl bit_vector <0.2n O(1)
select_support_scan bit_vector 64 O(n)
select_support_il bit_vector_il 64 O(logn)
select_support_rrr rrr_vector 64 O(logn)
select_support_sd sd_vector 64 (1)

Call util::init_support(sls,bv) to initialize sls to bitvector
bv. Call s1s(7) to get select(i) = min{j | rank(j+1) = i}.

Wavelet Trees (WT=BV-+RS+SLS)

Wavelet trees represent sequences over byte or integer
alphabets of size o and consist of a tree of BVs. Rank and
select on the sequences is reduced to rank and select on BVs,
and the runtime is multiplied by a factor in [Hj,logo].

Class Shape lex_ordered  Default  Travers-
alphabet able
wt_rlmn underlying W'T dependent X
wt_gmr none X integer X
wt_ap none X integer X
wt_huff  Huffman X byte v
wm_int Balanced X integer v
wt_blcd Balanced v byte v
wt_hutu  Hu-Tucker v byte v
wt_int Balanced v integer v

Public types: value_type, size_type, and node_type (if WT is

You get the idea! An incredibly powerful library, at your fingertips.

traversable). In the following let ¢ be a symbol, 4,j,k, and ¢
integers, v a node, and r a range.

Public methods: size(), operator [i], rank(i,c), select(i,c),
inverse_select (i), begin(), end().

Traversable WTs provide also: root(), is_leaf (v), empty(v),
size(v), sym(v), expand(v), expand(v,r),

expand (v,std: :vector<r>), bit_vec(v), seq(v).
lex_ordered W'Ts provide also: lex_count(z,j,c) and
lex_smaller_count(i,c). wt_int provides: range_search_2d.
wt algorithm.hpp contains the following generic WT method
(let wt be a WT object): intersect(wt, vector<r>),
quantile_freq(wt,i,j,q), interval_symbols(wt,i,j,k,...),
symbol_lte(wt,c), symbol_gte(wt,c),
restricted_unique_range_values(wt,z;,Z;,Yi,y;).

Suffix Arrays (CSA=IV+4+WT)

Compressed suffix arrays use CIVs or W'Ts to represent the
suffix arrays (SA), its inverse (ISA), BWT, V¥, and LF. CSAs
can be built over byte and integer alphabets.

Class Description

csa_bitcompressed Based on SA and ISA stored in a IV.
csa_sada Based on V¥ stored in a CIV.

csa_wt Based on the BWT stored in a WT.

Public methods: operator [i], size(), begin(), end().
Public members: isa, bwt, 1f, psi, text, L, F, C, char2comp,
comp2char, sigma.

Policy classes: alphabet strategy (e.g. byte_alphabet,
succinct_byte_alphabet, int_alphabet) and SA sampling
strategy (e.g. sa_order_sa_sampling,
text_order_sa_sampling )

Longest Common Prefix (LCP) Arrays

Class Description

lcp_bitcompressed Values in a int_vector<>.

lcp_dac Direct accessible codes used.

lcp_byte Small values in a byte; 2 words per large.
lcp_wt Small values in a WT; 1 word per large.
lcp_vlc Values in a vlc_vector.

Values stored permuted. CSA needed.
lcp_support_tree Only depths of CST inner nodes stored.
lcp_support_tree2 + large values are sampled using LF.
Public methods: operator[i], size(), begin(), end()

Balanced Parentheses Supports (BPS)

We represent a sequence of parentheses as a bit_vector. An
opening/closing parenthesis corresponds to 1/0.

Class Description

bp_support_g Two-level pioneer structure.
bp_support_gg Multi-level pioneer structure.
bp_support_sada  Min-max-tree over excess sequence.
Public methods: find_open(i), find_close(i), enclose(i),
double_enclose(i,7), excess (i), rr_enclose(z,j), rank(z) 4 s
select(z).

Call util::init_support(bps,bv) to initialize a BPS bps to
bit_vector bv.

lcp_support_sada



Some practical advice

Suffix Trees (CST—CSA-+LCP-+BPS)

A CST can be parametrized by any combination of CSA ,LCP,
and BPS. The operation of each part can still be accessed
through member varaibles. The additional operations are
listed below. CSTs can be built for byte or integer alphabets.

Class Description

cst_sada Represents a node as position in BPS. Naviga-
tional operations are fast (they are directly trans-
lated in BPS operations on the DFS-BPS). Space:
4dn+o(n)+|CSA|+|LCP| bits.

cst_sct3 Represents nodes as intervals. Fast construction,

but slower navigational operations. Space: 3n+
o(n)+|CSA|+|LCP|

Public types: node_type. In the following let v and w be nodes

and i, d, lb, rb integers.

Public methods: size(), nodes(), root(), begin(), end(),

begin_bottom_up(), end_bottom_up, size(v), is_leaf (v),

degree (v), depth(v), node_depth(v), edge(v, d), 1b(v),

rb(v), id(v), inv_id (i), sn(v), select_leaf (i), node(lb,

rb), parent (v), sibling(v), lca(v, w), select_child(v, i),

child(v, ¢), children(vw), s1(v), wl(v, c),

leftmost_leaf (v), rightmost_leaf (v)

Public members: csa, 1lcp.

The traversal example shows how to use the DFS-iterator.

Range Min/Max Query (RMQ)

A RMQ rmq can be used to determine the position of the
minimum value® in an arbitrary subrange [4, j] of an
preprocessed vector v. Operator operator(i,j) returns

z = min{r| r € [i,5] A v[r] < vIk] Vk € [i, ]}

Class Space Time
rmq_support_sparse_table nlogZn (1)
rmq_succint_sada 4n + o(n) O(1)
rmq_succint_sct 2n + o(n) O(1)

Constructing data structures

Let o be a WT-; CSA-, or CST-object. Object o is built with
construct (o,file,num_bytes=0) from a sequence stored in
file. File is interpreted dependent on the value of num_bytes:
Value File interpreted as

num_bytes=0 serialized int_vector<>.

num_bytes=1 byte sequence of length util::file_size(file).
num_bytes=2 16-bit word sequence.

num_bytes=4 32-bit word sequence.

num_bytes=8 64-bit word sequence.

num_bytes=d Parse decimal numbers.

Note: construct writes/reads data to/from disk during
construction. Accessing disk for small instances is a
considerable overhead. construct_im(o,data,num_bytes=0)
will build o using only main memory. Have a look at this
handy tool for an example.

Configuring construction

The locations and names of the intermediate files can be
configured by a cache_config object. It is constructed by
cache_config(del,tmp_dir,id, map) where del is a boolean
variable which specifies if the intermediate files should be
deleted after construction, tmp_dir is a path to the directory

where the intermediate files should be stored, id is used as
part of the file names, and map contains a mapping of keys
(e.g. conf::KEY_BWT, conf::KEY_SA,...) to file paths.

The cache_config parameter extends the construction method
to: construct(o,file,config,num_bytes).

The following methods (key is a key string, config represenet
a cache_config object, and o a sdsl object) should be handy
in customized construction processes:

cache_file_name (key,config)
cache_file_exists(key,config)
register_cache_file(key,config)

load_from_cache (o,key,config)
store_to_cache(o,key,config)

Resource requirements

Memory: The memory peak of CSA and CST construction
occurs during the SA construction, which is 5 times the texts
size for byte-alphabets and inputs < 2 GiB (see the Figure
below for a 200 MB text) and 9 times for larger inputs. For
integer alphabets the construction takes about twice the space
of the resulting output.

Time: A CST construction processes at about 2 MB/s. The
Figure below shows the resource consumption during the
construction of a cst_sct3<> CST for 200 MB English text.
For a detailed description of the phases click on the figure.

Memory Usage (MiB)

40 50
Time (seconds)

This diagram was generated using the sample program
memory-visualization.cpp.

Reading and writing data

Importing data into sdsl structures

load_vector_from_file(v, file, num_bytes)
Load file into an int_vector v. Interpretation of file
depends on num_bytes; see method construct.

Store sds| structures

Use store_to_file(o, file) to store an sdsl object o to file.
Object o can also be serialized into a std::ostream-object out
by the call o.serialize(out).

Load sdsl structures

Use load_from_file(o, file) to load an sdsl object o, which
is stored in file. Call o.1load(in) reads o from
std::istream-object in.

You get the idea! An incredibly powerful library, at your fingertips.

Utility methods

More useful methods in the sdsl::util namespace:

Method Description

pid() Id of current process.

id() Get unique id inside the process.

basename(p) Get filename part of a path p.

dirname (p) Get directory part of a path p.

demangle(o) Demangles output of typeid (o) .name().
demangle2(o) Simplifies output of demangle. E.g. removes

sdsl::-prefixes, ...

to_string(o) Transform object o to a string.

assign(ol,02) Assign ol to 02, or swap ol and o2 if the objects
are of the same type.

clear (o) Set o to the empty object.

Measuring and Visualizing Space
size_in_bytes(o) returns the space used by an sdsl object o.
Call write_structure<JSON_FORMAT>(o,out) to get a detailed
space breakdown written in JSON format to stream out.
<HTML_FORMAT> will write a HTML page (like this), which
includes an interactive SVG-figure.

Methods on words

Class bits contains various fast methods on a 64-bit word z.
Here the most important ones.

Method Description
bits::cnt(x) Number of set bits in z.
bits::sel(xz,i) Position of i-th set bit, i € [0, ent(z) —1).

bits::lo(z) Position of least significant set bit.
bits::hi(z) Position of most significant set bit.
Note: Positions in x start at 0. lo and hi return 0 for z = 0.

Tests

A make test call in the test directory, downloads test inputs,
compiles tests, and executes them.

Benchmarks

Directory benchmark contains configurable benchmarks for
various data structure, like WTs, CSAs/FM-indexes
(measuring time and space for operations count, locate, and
extract).

Debugging

You get the gdb command pv <int_vector> <idx1> <idx2>,

which displays the elements of an int_vector in the range
[idx1, idx2] by appending the file sdsl.gdb to your .gdbinit.

© Simon Gog
Cheatsheet template provided by Winston Chang
http://www.stdout.org/~winston/latex/

Notes
1 select_0_type not defined for sd_vector.
2 It is also possible to rank 0 or the patterns 10 and 01.
3 It is also possible to select 0 or the patterns 10 and 01.
4 For PBS the bits are counted in the prefix [0..7].
5 Or maximum value; can be set by a template parameter.



