Indexing the (compacted)
colored de Bruijn graph



Scaling up fast reference-based indices

Motivation: Indices used in “ultra-fast” mapping approaches are
typically very memory hungry. This is for transcriptome mapping,
but not scalable to genomic, metagenomic, pangenomic or population

mapping.

Goal: Develop an index with practical memory requirements ‘
that maintains the desirable performance (i.e. query) '
characteristics of the “ultra-fast™ indices.

Compacted colored de Bruijn graph (=
(ccdBG) o o\
Built over 1 or more genomes / sequence \g

collections

Index makes use of minimum perfect hashing
succinct bit vector representations and (optionally)
a new sampling scheme o
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e The past decade has largely been dominated by SA/BWT/FM-index-

based approaches to reference sequence indexing (e.g. Bowtie,
BWA, BWA-MEM, Bowtie2, STAR, etc.)

e [here has been a renaissance of sorts for hash-based indexing
(deBGA, Brownie, kallisto, mashmap, minimap & minimap?2, etc.)

e Pufferfish goes the hashing-based route; with a twist

e Not considering generalized path indices on general seq (e.g. GCSAZ2
(VG), HISAT2). Interesting, but a different problem.

https:/github.com/COMBINE-lab/pufferfish



https://github.com/COMBINE-lab/pufferfish

Recall the “colored” de Bruijn Graph

Nodes are k-mers (here k=3)
Edges exist between nodes that overlap by k-1 (in the input)*
Colors encode “origin” of k-mers (e.q., references where they exist)

-wq.
- & -
-

compacted colored de Bruijn graph

TGGTAA
S

s
TCATTG AACCG
e TGCGAA

Example from : https://algolab.files.wordpress.com/2016/10/chikhi-milan-18nov.pdf

There are multiple related (but distinct) definitions of the dBG in practice. We adopt the edge-explicit version.



The compacted colored dBG as a sequence index

e Key idea: represent a collection of sequences using the colored de
Bruijn graph (dBG) (Igbal "12).

e Each color is an input reference (e.g. genome or transcript).

e Use the compacted colored dBG as an index for reference-based
seguence search.

e Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?



The compacted colored dBG as a sequence index

e Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?

kK-mer
[ Rl [ RD?] I : |
repeat
List all occurrences individually - Factors out long repeat (k-mer pos always same)

— > R1-1,R2-11,...,RM -1 "1~ R1-1,R2-11, ..., RM -1

I
I
I
— > R1-1+1,R2-11+1, ..., RM - 11+1 | —_— )
I
- R1-11+2, R2 - 11+2, ..., RM - [1+2 | —_— 5 1
I
. - | —> 2
— > R1-k, R2 -k, ..., RM -k |
| .
| —_— = |1-k

The cdBG removes redundancy by providing an extra level of indirection




The compacted colored dBG as a sequence index

e Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?

Still, the biggest problem for these schemes, Iin practice, is memory usage

The main culprit is the hash table itself

The cdBG removes redundancy by providing an extra level of indirection



Recall: Minimum Pertfect Hashing

Minimum Perfect Hash Function (MPHF)
KU, [+ F—> N

if x € % then f(x) € [1, | H|]

if x € \% then f(x) € [1, |% ‘] (Like “false positives”)

|

Best methods achieve ~2.1 bits/key regardless of key size

fis a complete, injective function from % — [1,

Use BBHash :)

Fast and scalable minimal perfect hashing for
massive key sets

Antoine Limasset!, Guillaume Rizk!, Rayan Chikhi?, and Pierre
Peterlongo?!

1 IRISA Inria Rennes Bretagne Atlantique, GenScale team, Campus de h tt p S //g |th U b ) CO m/r | Z kg/B B H aS h

Beaulieu 35042 Rennes, France
2 CNRS, CRIStAL, Université de Lille, Inria Lille - Nord Europe, France


https://github.com/rizkg/BBHash

The dense Puftferfish index

MPHF (h)
.......... h(z)
T= A(_)_(}_G-.(_)_E / \
\_'
[Pri)
N useq /
unitigsof — 000000000000y .
GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCACGGCG'GCTGTCCTGGTGCAGTATGTGGACACGCT
ccdBG , O ,
bv X X X :
| [1] 1 [1] [1] [1] —
utab

{refy, plo, 0'0}, {refs, pso, 050}

{refso, pom, 08%n}, {refs, p3u, 03u}, {refi2, p2m, 0'2u}

Optionally: explicit edge table, equivalence class table

rank(bv, pn) = 3

_—



The dense Puftferfish index

MPHF (h)

.¢

Maps each valid k-mer to some number
in [O,N)

Optionally: explicit edge table, equivalence class table



The dense Puftferfish index

At index h(x), this table contains the
position, in the list of unitigs, of this k-mer

Optionally: explicit edge table, equivalence class table



The dense Puftferfish index

useq Ve

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTGACGGCGGCTGTCCTGGTGCAGTATGTGGACACGCT

bv : ' : :
| 1] 1 [1] 1] 11 — |

AN

. useq contains the uniting sequences
concatenated together

e bvis a boundary vector that records a 1
at the end of each uniting, and a 0
elsewhere

Optionally: explicit edge table, equivalence class table



The dense Puftferfish index

utab / \

{refy, p'o, o', {refs, peo, 0%} Records, for each uniting, the list of

references, positions and orientations in

which it occurs

{fefao, paon 080“}1 {r8f3, p3M1 °3M}, {ref12, P"m, 012M}

Optionally: explicit edge table, equivalence class table



The dense Puftferfish index

MPHF (h)
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T= A(_)_(}_G-.(_)_E / \
\_'
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utab

{refy, plo, 0'0}, {refs, pso, 050}
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_—



Who's the culprit?

61.81%

reflengths.bin

%(}q%/z, rank.bin

1.39% eqtable.bin

10.12%

mphf.bin

18.33%

seq.bin ctable.bin



Who's the culprit?

61.81%

reflengths.bin
0 rank.bin
2914, |
1.39% eqtable.bin
10.12%
mphf.bin

18.33%

seq.bin ctable.bin



The sparse Pufferfish index

In large indices, the position table dominates index size

K-mer with
sampled position

-—-—-—|—-—|—-|:|-ﬁ—|i -
ATC

nucleotides to add to[1to get

Intuition: Successors and predecessors in unipaths are globally unique,
instead of storing position information for all k-mers, store positions only
at sampled “landmarks”™ and say how to navigate to these landmarks
(similar to bi-directional sampling in the FM-index).



The sparse Pufterfish index (in detail)

X - queried k-mer (not sampled)
x’- sampled k-mer (nearest)

() pos[rank(IsSamp, h(x))]  Pos(X) = pos[rank(lsSamp, h(x"))] - 4
X
x= CAGCCGC MPHF h(x)
Ny, / Unipath Array Extension Vector
IsSamp

s | TCACGGCGGCTGTCCTG | wee :

1000000001000 L

ocamon |

0110000001000 h(x) -rank(lsSamp, h(x)) -

ACTO

Directionl
-00001111-000 I

.

GCGGCTG
) ;
-6EG6CTG TCCT =x



Size on disk

What sampling factor is right?

Tradeoff : Sparser sampling — less space but slower lookup
Fastest . Sampling factor s > 2-e+1 (Still a range of sizes)

Smallest : Extension size = 1, sampling = s

Jocs Index Sizes Component File Sizes (Genome)
18GB
4GB
16GB
14GB
12GB
v
10GB} — 2GB~
5
0.5GB o ECBr
N
0.4GB <
' 1.2GB
0.2GB
0.4GB
0.1GB
0.0GB
0.0GB
0 < 5 6 7 8 > 6 / 8

Extension size Extension size



Index space & K-mer query time

Space of index + query in RAM

Memory (MB)

Tool
Human Human Bacterial
Transcriptome Genome Genome
BWA 308 4,439 27,535
kallisto 3,336 110,464 232,353
pufferfish dense 454 17,684 41,532
pufferfish sparse 341 12,533 30,665

#Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv:1303.3997.
ABray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525-527.



Index space & K-mer query time

Time to look up all fixed-length substrings in an experiment

Tool Time (h:m:s)
Human Human Bacterial
Transcriptome Genome Genome
BWA 0:17:35 0:50:31 0:14:05
kallisto 0:02:01 0:19:11 0:22:25
pufferfish dense 0:02:46 0:10:37 0:06:03
pufferfish sparse 0:08:34 0:22:11 0:08:26

# queries: 747,842,900 7,508,576,020 509,143,360



Putferfish summary (part 1)

® [0 keep memory usage reasonable, we have to be quite
careful about our hashing-based schemes.

e [he dense puftterfish index strikes a good balance
between iIndex space and raw guery speed.

oAt a constant factor (though not asymptotic) cost, index
size Is tunable with our sampling scheme.

oAt least for fixed-length patterns, a good hashing
approach can be much faster than (still asymptotically-
optimal) full-text indexes.



An example application of Putterfish

e [axonomic read classification — for each read, assign it
to the taxon (strain, species, genus) from which we think
it derived. Related to, but distinct from, taxonomic
abundance estimation.

Query sequence

Taxonomy tree

Figures adapted from: Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome
biology, 15(3), p.R46.



Putferfish taxonomic assignment

We adopt what is essentially the algorithm of Kraken*, but
replace k-mer counting with lightweight mapping.

This enforces positional & orientation consistency ot matches

e Score all root-to-leaf
(RTL) paths

e Assign read to leaf of
highest-scoring path

® |n case of tie, assign
read to LCA of all
highest-scoring paths.

Reads

Kingdom

Union of coverage I
L1V [°r]1 U [k1] U [K,1]
[

Species

N — ] [ 1 1]
[l U [7.5] [k U [K,r]
Read coverage intervals

/ [kl UK, > Gl U [P

In case of multi-mapping
the read is assigned to
more covered candidate

*Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.



“Whole taxonomy™ accuracy assessment

Correlation at each level of tree

) N

Reads /
Kingdom
s X
Family
Genus
A .
Missed one
read
assignment
< Truth (©)
Species

True assignment to leaf nodes

Pufferfish taxonomic
Truth read assignment



“Whole taxonomy™ accuracy assessment

Correlation at each level of tree

Total reads /_\A
in this subtree \

Reads /
Kingdom
s X
Family
Genus
A .
Missed one
read
assignment
< Truth (©)
Species

True assignment to leaf nodes

Pufferfish taxonomic
Truth read assignment



“Whole taxonomy™ accuracy assessment

Correlation at each level of tree

Total reads /_\A
in this subtree Reads \

assigned at Reads

—

. Kingdom
/ this node J .
? /<
Family
Genus
A .
Missed one
read
assignment
< Truth (©)
Species

True assignment to leaf nodes

Pufferfish taxonomic
Truth read assignment



Putferfish taxonomic assignment

1.0 -
0'8- é
___________ o 0.7 - % 0.9 -
Higher : 5 é £ i
C S L 06 v = 0.8-
: IS ) 8
1 ! 1
: : 0.5 - Q.
better E N o7 )
0.4
0.3 0.6 v
: E
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‘ 0.8 -
Lolwer | .
: IS L a
: 1 m
. better < o6
.(distance): =
. : 0.5 -
L
kraken clark
Simulations:

Simulated data from : Mclintyre, et al. (2017).
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1). (LC1-8, HC1, HC2)



The colored de Bruijn Graph as
an index for large-scale sequence
search



Facing a New Challenge

The Sequence Read Archive (SRA) ...

Sequence Read Archive Database Growth

total bytes

AT m o m m mEmEm E E E E E E o W M M M M M M M EEEE oo omomom o mGIETL b e e e e e TR e e e e e e e e e e E e E o Em o os

Petabyte

open access bytes

bytes

Terabyte

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
date

is not searchable by sequence* ! (Yes, | know!)
This renders what is otherwise an immensely valuable public resource largely inert

Q: What if | find e.g., a new disease-related gene, and want to see if it appeared in
other experiments?

A: (basically) Too bad. “ there is an SRA BLAST, but functionality is limited



Facing a New Challenge

Contrast this situation with the task of searching assembled, curated genomes,
For which we have an excellent tool; BLAST™.

blastn | blastp | blastx  tblastn @ tblastx

BLASTN programs search nucleotide databases using a nucle
Enter Query Sequence — : -

Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
From
To
4
Or, upload file Choose File No file chosen Y
Job Title

Enter a descriptive title for your BLAST search &)

Align two or more sequences &

_ BLAST

Essentially, the “Google of genomics”

However, even the scale of reference databases requires fundamental algorithmic
Innovations

:Compressive genomics

+ Po-Ru Loh, Michael Baym & Bonnie Berger

Entropy-ScaImg Search of Massive Biological Data

Y. William Yu,"-22 Noah M. Daniels,'->* David Christian Danko,? and Bonnie Berger':%*
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

1
1 Algorithms that compute directly on compressed genomic data allow analyses to keep pace with data generation.

2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Co-first author

*Correspondence: bab@mit.edu

http://dx.doi.org/10.1016/j.cels.2015.08.004

*Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.



The Computational Problem

So why can’t we just use BLAST for searching “raw” data?

e Patterns of interest might be spread across many reads
(no contiguous substring)

e [he pattern we are looking for may not be present in an
assembled genome (we have genomes for only a small
fraction of the ~8.7 Million™ species on the planet — most
of which can’t be cultivated in labs)

® [here is so much more raw data; there is redundancy In
raw data, but also diversity. A reference genome reduces
entire populations (e.g. humans) to a single string —
hugely lossy

e Bl AST-like algorithms & data structures just don’t seem to
scale!

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.



A New Approach

nature
. biotechnology ;

Fast search of thousands of short-read
' sequencing experiments

1
1 Brad Solomon & Carl Kingsford
1

1

1 Nature Biotechnology 34, 300-302 (2016) Received: 28 April 2015

1

1 doi:10.1038/nbt.3442 Accepted: 23 November 2015

1 Download Citation Published online: 08 Februarv 2016

Solomon & Kingsford reframe this problem slightly, and
suggested a direction toward a potential solution ...

Solution:

A hierarchical index of k-mer content represented approximately via
Bloom filters.

Returns “yes/no” results for individual experiments = “yes” results
can be searched using more traditional methods



Split Sequence Bloom Trees

Split Sequence Bloom Trees : Solomon & Kingsford (RECOMB 2017)
Happy to discuss the algorithmic improvements over SBT oftline

Data Index SBT Split SBT
Build Time 18 Hr 78 Hr
Compression Time 17 Hr 19 Hr

Uncompressed Size 1295 GB 1853 GB
Compressed Size 200GB 39.7GB

Table 2: Build statistics for SBT and SSBT constructed from a 2652 experiment set. The sizes are the total
disk space required to store a bloom tree before or after compression. In SSBT’s case, this compression
includes the removal of non-informative bits.

Query Time: 0=0.7 60=0.8 6=0.9

SBT 20Min  19Min 17 Min
SSBT 37Min 3.5Min 3.2 Min
RAM SSBT 31 Sec 29 Sec 26 Sec

Table 7: Comparison of query times using different thresholds € for SBT and SSBT using the set of data at
TPM 100.
Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, B. and Kingsford, C., Improved search of large transcriptomic sequencing databases using split sequence bloom trees. In International Conference on
Research in Computational Molecular Biology (pp. 257-271). Springer, Cham.



A fundamentally different approach

Our initial idea — the Bloom Filter is limiting.
What can we get by replacing it with a better AMQ

_______________________________________ Lo

A General-Purpose Counting Filter: Making Every Bit
Count

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro
Stony Brook University
Stony Brook, NY, USA

{ppandey, bender, rob, rob.patro}@cs.stonybrook.edu

siamoDb 2017/ e J e .
Rainbowfish: A Succinct Colored de Bruijn Graph

Representation®

Fatemeh Almodaresi', Prashant Pandey?, and Rob Patro®

Interesting observation
about patterns of k-mer occurrence

1 Stony Brook University, Stony Brook, NY, USA
falmodaresit@cs.stonybrook.edu

2 Stony Brook University, Stony Brook, NY, USA
ppandeyQ@cs.stonybrook.edu

3 Stony Brook University, Stony Brook, NY, USA
rob.patroQcs.stonybrook.edu

WABI 2017

Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index

‘| bet we can exploit
that for large-scale search”

Prashant Pandey’, Fatemeh Almodaresi', Michael A. Bender!, Michael Ferdman®, Rob Johnson?!, and Rob Patro!

! Computer Science Dept., Stony Brook University
{ppandey, falmodaresit, bender, mferdman, rob.patro}@cs.stonybrook.edu
2 VMware Research

robj@vmware.com

RECOMB 2018 & Cell Systems (https://doi.org/10.1016/j.cels.2018.05.021)



https://doi.org/10.1016/j.cels.2018.05.021

The CQF

Approximate Multiset Representation occupieds

runends

remainders

ha(e) ha(f)

Works based on quotienting™ & fingerprinting keyé
Let k be a key and h(k) a p-bit hash value
h(k)

N —
p-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)




The CQF

Approximate Multiset Representation occupieds § ;
remainders (e)h hi(f)
-« 2q >
Works based on quotienting™ & fingerprinting keys

array of size 29r-bit slots

h(k)
R —
p-bits ‘FJ

q-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



The CQF

Approximate Multiset Representation occupieds § ;
remainders (e)h hi(f)
-« 2q >
Works based on quotienting™ & fingerprinting keys

array of size 29r-bit slots

h(k) ‘/\ Value stored in

I - . . .
r-bit slot (fingerprint
p-bits WW ( gerp )

q-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



Mantis

Observation 1 : It | want to index N k-mers over E experiments, there
are < min (N, 2'E') nossible distinct “patterns of occurrence” of the

k-mers, there are usually many tewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are

highly correlated.
Why?

https://github.com/splatlab/mantis
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Mantis

Observation 1 : It | want to index N k-mers over E experiments, there
are < min (N, 2'E') nossible distinct “patterns of occurrence” of the

k-mers, there are usually many tewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are

highly correlated.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present
IN an experiment at moderate to high abundance, we will likely
observe all of its k-mers.

https://github.com/splatlab/mantis
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Mantis

Observation 1 : It | want to index N k-mers over E experiments, there
are < min (N, 2'E') nossible distinct “patterns of occurrence” of the

k-mers, there are usually many tewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are
highly correlated.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present
IN an experiment at moderate to high abundance, we will likely
observe all of its k-mers.

What if we add a layer of indirection: Store each distinct pattern
(color class) only once. label each pattern with with an index, s.t.
frequent patterns get small numbers (think Huffman encoding)

David Wheeler approves ... we think.

https://github.com/splatlab/mantis
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The Mantis Index: Core |dea

[nput Experiments

Fy E L iy k-mer |Color ID Color class table
ACTG || ACTG ACTG i EsxFs Ey
ACTT . | ACTT 0 \1 1 \0
Mantis
CTTG || CTTG » | CTTG 01011
TTTC || TTTC TTTC 1 {0100
GCGT || GCGT |[GCGT GCGT | 1l o]l
AGCC |[ AGCC AGCC /‘
No tree! Compressed using RRR*

e Build a CQF for each input experiment (can be different sizes, since
CQFs of different sizes are mergeable)

e Combine them via multi-way merge

e CQF : key = k-mer, value = color class ID

e £stimate a good ordering of color class IDs from first few million k-mers

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 233-242.



Why does this work®

The distribution of k-mers / color class is highly skewed
108

107

- - - RN RN
(&) o o (&) o
N w ~ [¢)} (o))

Number of k-mers in given color class

-
(&)

10° 10" 102 10° 104 10° 10° 107 108 10°
Color class id's in Mantis order

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments



Mantis : Comparing to SSBT

Construction Time — How long does it take to build the index?
Index Size — How large is the index, in terms of storage space?
Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?

Bonus: It the remainder + quotient bits = original key size & we use
an invertible hash, the CQF is exact.

Mantis is compact enough that we can exactly rather than
approximately index the k-mers in our experiment set.

This lets us ask useful questions about how other approaches pertorm.



Mantis : Construction Time & Index Size

Indexed 2,652 human RNA-seq (gene expression) experiments
~4.5TB (GZip compressed) of data

Table 1. Time and Space Measurement for Mantis and SSBT

Mantis SSBT
Build time 16 hr 35 min 97 hr
Representation size 32 GB 39.7 GB

e Mantis can be constructed ~6x faster than a comparable
SSBT

e The final Mantis representation is ~20% smaller than the
comparable SSBT representation.

Note: both results assume you already have per-experiment
AMQs (either Bloom Filters or CQFs)



Mantis : Query Speed

Querying for the presence of randomly selected genes across all

2,652 experiments.
0 threshold for SSBT query

ﬂ\

Mantis SSBT (0.7) SSBT (0.8) SSBT (0.9)
10 Transcripts 25 s 3min8s 2min25s 2min7s
100 Transcripts 28 s 14 min55s 10min56s 7 min57s
1000 Transcripts 1min3s 2hr22min 1 hr54 min 1 hr 20 min

+ Mantis is ~6 — 109x faster than (in memory) SSBT

Note: Mantis doesn’t require a 6 threshold for queries, though one
can be applied post hoc.

A Mantis query returns, for each experiment containing at least one
qguery k-mer, the fraction (true 0) of query k-mers contained in the
experiment.



Mantis : Query Quality

Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT 6 =0.8

Both Only Mantis Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577
100 Transcripts 22,466 146 10,588 0.679
1000 Transcripts 160,188 1,409 95,606 0.626

“Both” means the number of those experiments that are reported by both
Mantis and SSBT. “Only Mantis” and “Only SSBT’’ mean the number of
experiments reported by only Mantis and only SSBT. All three query
benchmarks are taken from Table 2 for 6 = 0.8.

Recall : Mantis is exact! Returns only experiments having = 6
fraction of the query k-mers.



Mantis : Query Quality

Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT 6 =0.8

Both Only Mantis |Only SSBT Precision
10 Transcripts 2,018 19 1,476 0.577

100 Transcripts 22,466 146 10,588 0.679
1000 Transcripts 160,188 | 1,409 95,606 0.626

N~

- Recall : Mantis is exact! Returns only experiments having =0
fraction of the query k-mers.

Due to a small number of corrupted SSBT filters — able to discover this b/c
of Mantis’ exact nature.



Some Remaining Challenges

e It improves greatly upon existing solutions; takes a different approach

e We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 10¢

» Can be made approximate while providing strong bounds :

Theorem 1. A query for q k-mers with threshold 0 returns only experiments containing at least O0q— O (dq+logn) queried
k-mers w.h.p.

but maybe not enough

Key Observation:

» K-mers grow at worst linearly
» Color classes increase super-linearly

Need a fundamentally better color class encoding; exploit
coherence between rows of the color class matrix



Consider the following color class graph

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

—y > = B> =

(=3 (=] - (=] -

o © |o |-

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.
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Consider the following color class graph

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

| 1 ~ ! 1
d \Q S build MST of 1\ 3
5 3 this graph
N E— N
: 4 ~

0

0

Unfortunately:
1) There are many color classes (full graph too big)
2) They are high-dimensional (# of experiments), neighbor
search is very hard (LSH scheme seem to work poorly)

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.



Mantis implicitly represents a colored dBG

Each CQF key represents a kmer = can explicitly query neighbors
Each k-mer associated with color class id — vector of occurrences

1
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CCG derived from dbG MST on our Graph
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The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes

Augment with all 0 color class to guarantee one, connected MST

To reconstruct a vector, walk from your node to the root,
tflipping the parity of the positions you encounter on each edge.



The MST approach scales very well

200 1

1501
m Representation
O]
2 + CQF
@ 1007 A MST
N + RRR

501 \ now the
k-mer table
0 is the bottleneck
0 2500 5000 7500 10000
# of samples
MST
Dataset # samples [ RRR Total Parent Delta  Boundary %
matrix space vector vector  bit-vector
200 0.42 0.15 0.08 0.06 0.01 0.37 |
%l\?fzszm 1,000 5.14 1.03 0.37 0.6 0.06 0.2 over ERR Broves
. 2,000 14.2 2.35 0.71 15 0.14 0.17 . ¥
P 5,000 59.89 721 1.72 5.1 0.39 0.12 _ with # of samples
10,000  |190.89 16.28 3.37 12.06 0.86 0.085
Blood, Brain,
2586 15.8 2.66 0.63 1.88 0.16 0.17

Breast (BBB)

dataset from SBT / SSBT / Mantis paper



How does MST approach affect query time?

One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?



How does MST approach affect query time?

One concern is that replacing O(1) lookup with

MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)

keeps it just as fast as lookup in the RRR matrix

Mantis with MST

10 Transcripts
100 Transcripts
1000 Transcripts

index load + query query
1 min 10 sec 0.3 sec
1 min 17 sec 8 sec
2 min 29 sec 79 sec

space
118GB
119GB
120GB

Mantis
index load + query query space
32 min 59 sec 0.5 sec  290GB
34 min 33 sec 11 sec  290GB
46 min 4 sec 80 sec  290GB




A Call To Arms

1016 //
15 /
10 ————————— - e e e e e e e e e e - —/————- ———————
Petabyte ~
T
IS
5] 13
2 10 We can search this, but want to search this ... and beyond
2
12
10 ——————————————————————————————————
Terabyte/
10"

PSR AP
date

"It seems that some essentially new ... ideas are here needed”
— Paul Adrien Maurice Dirac*

*Principles of Quantum Mechanics 2nd edition, Chapter XllI, Section 81 (p. 297) Data from: https://www.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi
P P P P g



