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colored de Bruĳn graph
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Colored de-Bruijn Graph

rank(ph(k)) = 3
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…
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.. 
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.. 

Motivation: Indices used in “ultra-fast” mapping approaches are 
typically very memory hungry.  This is OK for transcriptome mapping, 
but not scalable to genomic, metagenomic, pangenomic or population 
mapping.

Goal: Develop an index with practical memory requirements 
that maintains the desirable performance (i.e. query) 
characteristics of the “ultra-fast” indices.

Compacted colored de Bruijn graph 
(ccdBG)

Built over 1 or more genomes / sequence 
collections

Index makes use of minimum perfect hashing 
succinct bit vector representations and (optionally)  

a new sampling scheme

Scaling up fast reference-based indices



Pufferfish: An efficient index for the ccdBG

Appeared at ISMB 2018

•The past decade has largely been dominated by SA/BWT/FM-index-
based approaches to reference sequence indexing (e.g. Bowtie, 
BWA, BWA-MEM, Bowtie2, STAR, etc.)

•There has been a renaissance of sorts for hash-based indexing 
(deBGA, Brownie, kallisto, mashmap, minimap & minimap2, etc.)

•Pufferfish goes the hashing-based route; with a twist.

https://github.com/COMBINE-lab/pufferfish

•Not considering generalized path indices on general seq (e.g. GCSA2 
(VG), HISAT2). Interesting, but a different problem.

https://github.com/COMBINE-lab/pufferfish


TCA CAT ATT TTG

TGG GGT GTA TAA

AAC ACC CCG

TGC GCG CGA GAA

TCATTG

TGGTAA

TGCGAA

AACCG

Recall the “colored” de Bruijn Graph
Nodes are k-mers (here k=3)

Example from : https://algolab.files.wordpress.com/2016/10/chikhi-milan-18nov.pdf

Edges exist between nodes that overlap by k-1 (in the input)*

There are multiple related (but distinct) definitions of the dBG in practice.  We adopt the edge-explicit version.

compacted colored de Bruijn graph

Colors encode “origin” of k-mers (e.g., references where they exist)



The compacted colored dBG as a sequence index

•Key idea: represent a collection of sequences using the colored de 
Bruijn graph (dBG) (Iqbal ’12).

•Each color is an input reference (e.g. genome or transcript).

•Use the compacted colored dBG as an index for reference-based 
sequence search.

•Redundant sequences (repeats) are implicitly collapsed.  Why is 
this potentially much better than a naive hash?



The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed.  Why is 
this potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1
R1-l1+1, R2 - l1+1, …, RM - l1+1
R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0
1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection



The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed.  Why is 
this potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1
R1-l1+1, R2 - l1+1, …, RM - l1+1
R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0
1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

Still, the biggest problem for these schemes, in practice, is memory usage Still, the biggest problem for these schemes, in practice, is memory usage 

The main culprit is the hash table itself 



https://github.com/rizkg/BBHash

Use BBHash :)

Recall: Minimum Perfect Hashing
Minimum Perfect Hash Function (MPHF)
𝒦 ⊆ 𝒰, f : 𝒦 → ℕ+

if x ∈ 𝒦 then f(x) ∈ [1, 𝒦 ]

if x ∈ 𝒰∖𝒦 then f(x) ∈ [1, 𝒰 ] (Like “false positives”)

Best methods achieve ~2.1 bits/key regardless of key size

f is a complete, injective function from 𝒦 → [1, 𝒦 ]

https://github.com/rizkg/BBHash


The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of  
ccdBG

(optional)



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Maps each valid k-mer to some number 
in [0,N)



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

At index h(x), this table contains the 
position, in the list of unitigs, of this k-mer



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

• useq contains the uniting sequences 
concatenated together 

• bv is a boundary vector that records a 1 
at the end of each uniting, and a 0 

elsewhere 



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Records, for each uniting, the list of 
references, positions and orientations in 

which it occurs



The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of  
ccdBG

(optional)



Who’s the culprit?



Who’s the culprit?



The sparse Pufferfish index
In large indices, the position table dominates index size

ATC

k-mer with  
sampled position

nucleotides to add to     to get 

Intuition: Successors and predecessors in unipaths are globally unique, 
instead of storing position information for all k-mers, store positions only 
at sampled “landmarks” and say how to navigate to these landmarks 
(similar to bi-directional sampling in the FM-index).



The sparse Pufferfish index (in detail)



What sampling factor is right?
Tradeoff : Sparser sampling → less space but slower lookup
Fastest : Sampling factor s > 2·e+1 (Still a range of sizes)
Smallest : Extension size = 1, sampling = s



Space of index + query in RAM

#Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv:1303.3997.
^Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527.

Index space & K-mer query time



Index space & K-mer query time

Time to look up all fixed-length substrings in an experiment

747,842,900 7,508,576,020 509,143,360# queries:



Pufferfish summary (part 1)

•The dense pufferfish index strikes a good balance 
between index space and raw query speed.

•At a constant factor (though not asymptotic) cost, index 
size is tunable with our sampling scheme.

•To keep memory usage reasonable, we have to be quite 
careful about our hashing-based schemes.

•At least for fixed-length patterns, a good hashing 
approach can be much faster than (still asymptotically-
optimal) full-text indexes.



An example application of Pufferfish
•Taxonomic read classification — for each read, assign it 
to the taxon (strain, species, genus) from which we think 
it derived. Related to, but distinct from, taxonomic 
abundance estimation.

Figures adapted from: Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome 
biology, 15(3), p.R46.



Pufferfish taxonomic assignment
We adopt what is essentially the algorithm of Kraken*, but 
replace k-mer counting with lightweight mapping.

This enforces positional & orientation consistency of matches

*Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.

•Score all root-to-leaf 
(RTL) paths

•Assign read to leaf of 
highest-scoring path

•In case of tie, assign 
read to LCA of all 
highest-scoring paths.



“Whole taxonomy” accuracy assessment



“Whole taxonomy” accuracy assessment

Total reads  
in this subtree



“Whole taxonomy” accuracy assessment

Total reads  
in this subtree Reads  

assigned at  
this node



Pufferfish taxonomic assignment

Simulated data from : McIntyre, et al. (2017). 
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1).

Higher 
is  

better

Lower 
is  

better 
(distance)

Simulations:
(LC1-8, HC1, HC2)
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The colored de Bruijn Graph as 
an index for large-scale sequence 

search



Facing a New Challenge
The Sequence Read Archive (SRA) … 

is not searchable by sequence* !  (Yes, I know!)

This renders what is otherwise an immensely valuable public resource largely inert
Q: What if I find e.g., a new disease-related gene, and want to see if it appeared in 
other experiments?
A: (basically) Too bad. * there is an SRA BLAST, but functionality is limited

Terabyte

Petabyte



Facing a New Challenge
Contrast this situation with the task of searching assembled, curated genomes, 
For which we have an excellent tool; BLAST*.

Essentially, the “Google of genomics”

However, even the scale of reference databases requires fundamental algorithmic 
innovations 

*Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.



The Computational Problem
So why can’t we just use BLAST for searching “raw” data?

•Patterns of interest might be spread across many reads 
(no contiguous substring)

•The pattern we are looking for may not be present in an 
assembled genome (we have genomes for only a small 
fraction of the ~8.7 Million* species on the planet — most 
of which can’t be cultivated in labs)

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.

•There is so much more raw data; there is redundancy in 
raw data, but also diversity. A reference genome reduces 
entire populations (e.g. humans) to a single string — 
hugely lossy

•BLAST-like algorithms & data structures just don’t seem to  
scale!



A New Approach

Solomon & Kingsford reframe this problem slightly, and 
suggested a direction toward a potential solution …

Solution:  

A hierarchical index of k-mer content represented approximately via 
Bloom filters.  
Returns “yes/no” results for individual experiments → “yes” results 
can be searched using more traditional methods  



Split Sequence Bloom Trees
Split Sequence Bloom Trees : Solomon & Kingsford (RECOMB 2017)

SSBTs are also faster to query than SBTs

Happy to discuss the algorithmic improvements over SBT offline

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302. 
Solomon, B. and Kingsford, C., Improved search of large transcriptomic sequencing databases using split sequence bloom trees. In International Conference on 
Research in Computational Molecular Biology (pp. 257-271). Springer, Cham.



A fundamentally different approach

RECOMB 2018 & Cell Systems (https://doi.org/10.1016/j.cels.2018.05.021)

SIGMOD 2017

Our initial idea — the Bloom Filter is limiting. 
What can we get by replacing it with a better AMQ

Interesting observation 
about patterns of k-mer occurrence

“I bet we can exploit 
that for large-scale search”

WABI 2017

https://doi.org/10.1016/j.cels.2018.05.021


The CQF
Approximate Multiset Representation 

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts 
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve 
collisions leads to a fast, cache-friendly  data structure

Let k be a key and h(k) a p-bit hash value

h(k)

p-bits
=

* Idea goes back at least to Knuth (TACOP vol 3)



The CQF
Approximate Multiset Representation 

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts 
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve 
collisions leads to a fast, cache-friendly  data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

p-bits

Determines position in 
array of size 2q r-bit slots

=

* Idea goes back at least to Knuth (TACOP vol 3)



The CQF
Approximate Multiset Representation 

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts 
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve 
collisions leads to a fast, cache-friendly  data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits

Determines position in 
array of size 2q r-bit slots

Value stored in

r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)



Mantis 
Observation 1 : If I want to index N k-mers over E experiments, there 
are                         possible distinct “patterns of occurrence” of the  
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform. 
Specifically, k-mers don't occur independently, occurrences are 
highly correlated.

https://github.com/splatlab/mantis

Why? 

https://github.com/splatlab/mantis
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Observation 1 : If I want to index N k-mers over E experiments, there 
are                         possible distinct “patterns of occurrence” of the  
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform. 
Specifically, k-mers don't occur independently, occurrences are 
highly correlated.

https://github.com/splatlab/mantis

Why?            Consider e.g. a gene G (~1000 k-mers).  If it is present  
in an experiment at moderate to high abundance, we will likely 
observe all of it’s k-mers.

https://github.com/splatlab/mantis


Mantis 
Observation 1 : If I want to index N k-mers over E experiments, there 
are                         possible distinct “patterns of occurrence” of the  
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform. 
Specifically, k-mers don't occur independently, occurrences are 
highly correlated.

What if we add a layer of indirection: Store each distinct pattern 
(color class) only once. label each pattern with with an index, s.t. 
frequent patterns get small numbers (think Huffman encoding)

https://github.com/splatlab/mantis

David Wheeler approves … we think.

Why?            Consider e.g. a gene G (~1000 k-mers).  If it is present  
in an experiment at moderate to high abundance, we will likely 
observe all of it’s k-mers.

https://github.com/splatlab/mantis


The Mantis Index: Core Idea

No tree!

•Build a CQF for each input experiment (can be different sizes, since 
CQFs of different sizes are mergeable)

•Combine them via multi-way merge
•CQF : key = k-mer, value = color class ID

Compressed using RRR*

•Estimate a good ordering of color class IDs from first few million k-mers
*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM 
symposium on Discrete algorithms, pages 233–242.



Why does this work?
The distribution of k-mers / color class is highly skewed

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments



Mantis : Comparing to SSBT

Bonus: If the remainder + quotient bits = original key size & we use 
an invertible hash, the CQF is exact.

Mantis is compact enough that we can exactly rather than 
approximately index the k-mers in our experiment set. 

This lets us ask useful questions about how other approaches perform.

Construction Time — How long does it take to build the index?

Index Size — How large is the index, in terms of storage space?

Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?



Mantis : Construction Time & Index Size

Note: both results assume you already have per-experiment 
AMQs (either Bloom Filters or CQFs)

• Mantis can be constructed ~6x faster than a comparable 
SSBT

Indexed 2,652 human RNA-seq (gene expression) experiments 
~4.5TB (GZip compressed) of data

•The final Mantis representation is ~20% smaller than the 
comparable SSBT representation.



Mantis : Query Speed
Querying for the presence of randomly selected genes across all 
2,652 experiments.

θ threshold for SSBT query

Note: Mantis doesn’t require a θ threshold for queries, though one 
can be applied post hoc. 

A Mantis query returns, for each experiment containing at least one 
query k-mer, the fraction (true θ) of query k-mers contained in the 
experiment.

• Mantis is ~6 — 109x faster than (in memory) SSBT



Mantis : Query Quality
Querying for the presence of randomly selected genes across all 
2,652 experiments. SSBT θ = 0.8

• Recall : Mantis is exact! Returns only experiments having ≥ θ 
fraction of the query k-mers.



Mantis : Query Quality
Querying for the presence of randomly selected genes across all 
2,652 experiments. SSBT θ = 0.8

Due to a small number of corrupted SSBT filters — able to discover this b/c 
of Mantis’ exact nature.

• Recall : Mantis is exact!  Returns only experiments having ≥ θ 
fraction of the query k-mers.



Some Remaining Challenges
๏ It improves greatly upon existing solutions; takes a different approach

๏ We demonstrate indexing on the order of 103 experiments, we 
really want to index on the order of 105 - 106

๏ Can be made approximate while providing strong bounds :

but maybe not enough

Need a fundamentally better color class encoding; exploit 
coherence between rows of the color class matrix

๏ K-mers grow at worst linearly  
๏ Color classes increase super-linearly

Key Observation:



Each color class is a vertex 

Every pair of color classes is connected by an edge whose weight 
is the hamming distance between the color class vectors

Consider the following color class graph
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Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.
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Each color class is a vertex 

Every pair of color classes is connected by an edge whose weight 
is the hamming distance between the color class vectors

Consider the following color class graph
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Unfortunately:  
1) There are many color classes (full graph too big) 
2) They are high-dimensional (# of experiments), neighbor 

search is very hard (LSH scheme seem to work poorly)
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Each CQF key represents a kmer → can explicitly query neighbors 
Each k-mer associated with color class id  → vector of occurrences
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Mantis implicitly represents a colored dBG
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Use the de Bruin graph (dBG) as an 
efficient guide for near-neighbor 
search in the space of color classes! 

dBG common in genomics. Nodes u,v 
are k-mers & are adjacent if k-1 suffix 
of u is the same as k-1 prefix of v
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Use the de Bruin graph (dBG) as an 
efficient guide for near-neighbor 
search in the space of color classes! 

dBG common in genomics. Nodes u,v 
are k-mers & are adjacent if k-1 suffix 
of u is the same as k-1 prefix of v
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Use the de Bruin graph (dBG) as an 
efficient guide for near-neighbor 
search in the space of color classes! 

dBG common in genomics. Nodes u,v 
are k-mers & are adjacent if k-1 suffix 
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The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes
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The MST efficiently encodes related color classes
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To reconstruct a vector, walk from your node to the root,  
flipping the parity of the positions you encounter on each edge.



The MST approach scales very well

dataset from SBT / SSBT / Mantis paper

Improvement  
over RRR improves 
with # of samples

now the  
k-mer table 

is the bottleneck



One concern is that replacing O(1) lookup with  
MST-based decoding will make lookup slow; does it?

How does MST approach affect query time?



One concern is that replacing O(1) lookup with  
MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)  
keeps it just as fast as lookup in the RRR matrix

How does MST approach affect query time?



Data from: https://www.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi

A Call To Arms

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed” 
— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond


