
Indexing the (compacted)
colored de Bruĳn graph

1 1 1 1 1 1

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCCATGAGGCTGTCCTGGTGCAGTATGTGGACACGCT

MPHF

x = CTTCC

Position
Vector

h(x)

ph(x)

…

Colored de-Bruijn Graph

rank(ph(k)) = 3

Unipath Occurence Table

…

…

{refr, p3r, o3r}, {refg, p3g, o3g}

{refy, p2y, o2y}, {refr, p2r, o2r}

…

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Paired end reads

@HEAD1
GCTCCTTTATGTTTGGGT
+
???DDDDDDHAH2<F?
@HEAD2
GGCATGTTCATGAAAAA
+
EDGHGIIIEEECFHIGIIIGI
@HEAD3
CCATACTTCTAGCAATTC
+
EHEEFE@CE;@ACCBBB
@HEAD4
CCCAATGAGCCTTTTGT
+
ACB?8BCCCC@BBBBC
..

@HEAD1
AACCAGCACTGTGCGA
+
(4>A:3:@A::@(444444##
@HEAD2
GCGCAGGCTGGGTGG
+
FHHHHFHIJJJJIJJJJII
@HEAD3
CATGGAGCACAGGCA
+
GHGHACE@;BGGAAAE
@HEAD4
CCGCTCCTTGAAGCTG
+
DDDBDDDCCDDDDCC
..

Motivation: Indices used in “ultra-fast” mapping approaches are
typically very memory hungry. This is OK for transcriptome mapping,
but not scalable to genomic, metagenomic, pangenomic or population
mapping.

Goal: Develop an index with practical memory requirements
that maintains the desirable performance (i.e. query)
characteristics of the “ultra-fast” indices.

Compacted colored de Bruijn graph
(ccdBG)

Built over 1 or more genomes / sequence
collections

Index makes use of minimum perfect hashing
succinct bit vector representations and (optionally)

a new sampling scheme

Scaling up fast reference-based indices

Pufferfish: An efficient index for the ccdBG

Appeared at ISMB 2018

•The past decade has largely been dominated by SA/BWT/FM-index-
based approaches to reference sequence indexing (e.g. Bowtie,
BWA, BWA-MEM, Bowtie2, STAR, etc.)

•There has been a renaissance of sorts for hash-based indexing
(deBGA, Brownie, kallisto, mashmap, minimap & minimap2, etc.)

•Pufferfish goes the hashing-based route; with a twist.

https://github.com/COMBINE-lab/pufferfish

•Not considering generalized path indices on general seq (e.g. GCSA2
(VG), HISAT2). Interesting, but a different problem.

https://github.com/COMBINE-lab/pufferfish

TCA CAT ATT TTG

TGG GGT GTA TAA

AAC ACC CCG

TGC GCG CGA GAA

TCATTG

TGGTAA

TGCGAA

AACCG

Recall the “colored” de Bruijn Graph
Nodes are k-mers (here k=3)

Example from : https://algolab.files.wordpress.com/2016/10/chikhi-milan-18nov.pdf

Edges exist between nodes that overlap by k-1 (in the input)*

There are multiple related (but distinct) definitions of the dBG in practice. We adopt the edge-explicit version.

compacted colored de Bruijn graph

Colors encode “origin” of k-mers (e.g., references where they exist)

The compacted colored dBG as a sequence index

•Key idea: represent a collection of sequences using the colored de
Bruijn graph (dBG) (Iqbal ’12).

•Each color is an input reference (e.g. genome or transcript).

•Use the compacted colored dBG as an index for reference-based
sequence search.

•Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?

The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1
R1-l1+1, R2 - l1+1, …, RM - l1+1
R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0
1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

The compacted colored dBG as a sequence index

•Redundant sequences (repeats) are implicitly collapsed. Why is
this potentially much better than a naive hash?

k-mer

repeat

R1 R2 R3

R1-l1, R2 - l1, …, RM - l1
R1-l1+1, R2 - l1+1, …, RM - l1+1
R1-l1+2, R2 - l1+2, …, RM - l1+2

R1-k, R2 - k, …, RM - k
……

R1-l1, R2 - l1, …, RM - l1

…

0
1

2

l1-k

List all occurrences individually Factors out long repeat (k-mer pos always same)

The cdBG removes redundancy by providing an extra level of indirection

Still, the biggest problem for these schemes, in practice, is memory usage Still, the biggest problem for these schemes, in practice, is memory usage

The main culprit is the hash table itself

https://github.com/rizkg/BBHash

Use BBHash :)

Recall: Minimum Perfect Hashing
Minimum Perfect Hash Function (MPHF)
𝒦 ⊆ 𝒰, f : 𝒦 → ℕ+

if x ∈ 𝒦 then f(x) ∈ [1, 𝒦]

if x ∈ 𝒰∖𝒦 then f(x) ∈ [1, 𝒰] (Like “false positives”)

Best methods achieve ~2.1 bits/key regardless of key size

f is a complete, injective function from 𝒦 → [1, 𝒦]

https://github.com/rizkg/BBHash

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of
ccdBG

(optional)

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Maps each valid k-mer to some number
in [0,N)

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

At index h(x), this table contains the
position, in the list of unitigs, of this k-mer

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

• useq contains the uniting sequences
concatenated together

• bv is a boundary vector that records a 1
at the end of each uniting, and a 0

elsewhere

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

(optional)

Records, for each uniting, the list of
references, positions and orientations in

which it occurs

The dense Pufferfish index

Optionally: explicit edge table, equivalence class table

unitigs of
ccdBG

(optional)

Who’s the culprit?

Who’s the culprit?

The sparse Pufferfish index
In large indices, the position table dominates index size

ATC

k-mer with
sampled position

nucleotides to add to to get

Intuition: Successors and predecessors in unipaths are globally unique,
instead of storing position information for all k-mers, store positions only
at sampled “landmarks” and say how to navigate to these landmarks
(similar to bi-directional sampling in the FM-index).

The sparse Pufferfish index (in detail)

What sampling factor is right?
Tradeoff : Sparser sampling → less space but slower lookup
Fastest : Sampling factor s > 2·e+1 (Still a range of sizes)
Smallest : Extension size = 1, sampling = s

Space of index + query in RAM

#Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv:1303.3997.
^Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527.

Index space & K-mer query time

Index space & K-mer query time

Time to look up all fixed-length substrings in an experiment

747,842,900 7,508,576,020 509,143,360# queries:

Pufferfish summary (part 1)

•The dense pufferfish index strikes a good balance
between index space and raw query speed.

•At a constant factor (though not asymptotic) cost, index
size is tunable with our sampling scheme.

•To keep memory usage reasonable, we have to be quite
careful about our hashing-based schemes.

•At least for fixed-length patterns, a good hashing
approach can be much faster than (still asymptotically-
optimal) full-text indexes.

An example application of Pufferfish
•Taxonomic read classification — for each read, assign it
to the taxon (strain, species, genus) from which we think
it derived. Related to, but distinct from, taxonomic
abundance estimation.

Figures adapted from: Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome
biology, 15(3), p.R46.

Pufferfish taxonomic assignment
We adopt what is essentially the algorithm of Kraken*, but
replace k-mer counting with lightweight mapping.

This enforces positional & orientation consistency of matches

*Wood, D.E. and Salzberg, S.L., 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), p.R46.

•Score all root-to-leaf
(RTL) paths

•Assign read to leaf of
highest-scoring path

•In case of tie, assign
read to LCA of all
highest-scoring paths.

“Whole taxonomy” accuracy assessment

“Whole taxonomy” accuracy assessment

Total reads
in this subtree

“Whole taxonomy” accuracy assessment

Total reads
in this subtree Reads

assigned at
this node

Pufferfish taxonomic assignment

Simulated data from : McIntyre, et al. (2017).
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1).

Higher
is

better

Lower
is

better
(distance)

Simulations:
(LC1-8, HC1, HC2)

M
AR

D

F1
-s

co
re

Sp
ea

rm
an

The colored de Bruijn Graph as
an index for large-scale sequence

search

Facing a New Challenge
The Sequence Read Archive (SRA) …

is not searchable by sequence* ! (Yes, I know!)

This renders what is otherwise an immensely valuable public resource largely inert
Q: What if I find e.g., a new disease-related gene, and want to see if it appeared in
other experiments?
A: (basically) Too bad. * there is an SRA BLAST, but functionality is limited

Terabyte

Petabyte

Facing a New Challenge
Contrast this situation with the task of searching assembled, curated genomes,
For which we have an excellent tool; BLAST*.

Essentially, the “Google of genomics”

However, even the scale of reference databases requires fundamental algorithmic
innovations

*Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.

The Computational Problem
So why can’t we just use BLAST for searching “raw” data?

•Patterns of interest might be spread across many reads
(no contiguous substring)

•The pattern we are looking for may not be present in an
assembled genome (we have genomes for only a small
fraction of the ~8.7 Million* species on the planet — most
of which can’t be cultivated in labs)

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.

•There is so much more raw data; there is redundancy in
raw data, but also diversity. A reference genome reduces
entire populations (e.g. humans) to a single string —
hugely lossy

•BLAST-like algorithms & data structures just don’t seem to
scale!

A New Approach

Solomon & Kingsford reframe this problem slightly, and
suggested a direction toward a potential solution …

Solution:

A hierarchical index of k-mer content represented approximately via
Bloom filters.
Returns “yes/no” results for individual experiments → “yes” results
can be searched using more traditional methods

Split Sequence Bloom Trees
Split Sequence Bloom Trees : Solomon & Kingsford (RECOMB 2017)

SSBTs are also faster to query than SBTs

Happy to discuss the algorithmic improvements over SBT offline

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.
Solomon, B. and Kingsford, C., Improved search of large transcriptomic sequencing databases using split sequence bloom trees. In International Conference on
Research in Computational Molecular Biology (pp. 257-271). Springer, Cham.

A fundamentally different approach

RECOMB 2018 & Cell Systems (https://doi.org/10.1016/j.cels.2018.05.021)

SIGMOD 2017

Our initial idea — the Bloom Filter is limiting.
What can we get by replacing it with a better AMQ

Interesting observation
about patterns of k-mer occurrence

“I bet we can exploit
that for large-scale search”

WABI 2017

https://doi.org/10.1016/j.cels.2018.05.021

The CQF
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k)

p-bits
=

* Idea goes back at least to Knuth (TACOP vol 3)

The CQF
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

p-bits

Determines position in
array of size 2q r-bit slots

=

* Idea goes back at least to Knuth (TACOP vol 3)

The CQF
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits

Determines position in
array of size 2q r-bit slots

Value stored in

r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)

Mantis
Observation 1 : If I want to index N k-mers over E experiments, there
are possible distinct “patterns of occurrence” of the
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are
highly correlated.

https://github.com/splatlab/mantis

Why?

https://github.com/splatlab/mantis

Mantis
Observation 1 : If I want to index N k-mers over E experiments, there
are possible distinct “patterns of occurrence” of the
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are
highly correlated.

https://github.com/splatlab/mantis

Why? Consider e.g. a gene G (~1000 k-mers). If it is present
in an experiment at moderate to high abundance, we will likely
observe all of it’s k-mers.

https://github.com/splatlab/mantis

Mantis
Observation 1 : If I want to index N k-mers over E experiments, there
are possible distinct “patterns of occurrence” of the
k-mers, there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently, occurrences are
highly correlated.

What if we add a layer of indirection: Store each distinct pattern
(color class) only once. label each pattern with with an index, s.t.
frequent patterns get small numbers (think Huffman encoding)

https://github.com/splatlab/mantis

David Wheeler approves … we think.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present
in an experiment at moderate to high abundance, we will likely
observe all of it’s k-mers.

https://github.com/splatlab/mantis

The Mantis Index: Core Idea

No tree!

•Build a CQF for each input experiment (can be different sizes, since
CQFs of different sizes are mergeable)

•Combine them via multi-way merge
•CQF : key = k-mer, value = color class ID

Compressed using RRR*

•Estimate a good ordering of color class IDs from first few million k-mers
*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 233–242.

Why does this work?
The distribution of k-mers / color class is highly skewed

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments

Mantis : Comparing to SSBT

Bonus: If the remainder + quotient bits = original key size & we use
an invertible hash, the CQF is exact.

Mantis is compact enough that we can exactly rather than
approximately index the k-mers in our experiment set.

This lets us ask useful questions about how other approaches perform.

Construction Time — How long does it take to build the index?

Index Size — How large is the index, in terms of storage space?

Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?

Mantis : Construction Time & Index Size

Note: both results assume you already have per-experiment
AMQs (either Bloom Filters or CQFs)

• Mantis can be constructed ~6x faster than a comparable
SSBT

Indexed 2,652 human RNA-seq (gene expression) experiments
~4.5TB (GZip compressed) of data

•The final Mantis representation is ~20% smaller than the
comparable SSBT representation.

Mantis : Query Speed
Querying for the presence of randomly selected genes across all
2,652 experiments.

θ threshold for SSBT query

Note: Mantis doesn’t require a θ threshold for queries, though one
can be applied post hoc.

A Mantis query returns, for each experiment containing at least one
query k-mer, the fraction (true θ) of query k-mers contained in the
experiment.

• Mantis is ~6 — 109x faster than (in memory) SSBT

Mantis : Query Quality
Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT θ = 0.8

• Recall : Mantis is exact! Returns only experiments having ≥ θ
fraction of the query k-mers.

Mantis : Query Quality
Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT θ = 0.8

Due to a small number of corrupted SSBT filters — able to discover this b/c
of Mantis’ exact nature.

• Recall : Mantis is exact! Returns only experiments having ≥ θ
fraction of the query k-mers.

Some Remaining Challenges
๏ It improves greatly upon existing solutions; takes a different approach

๏ We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 106

๏ Can be made approximate while providing strong bounds :

but maybe not enough

Need a fundamentally better color class encoding; exploit
coherence between rows of the color class matrix

๏ K-mers grow at worst linearly
๏ Color classes increase super-linearly

Key Observation:

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

Consider the following color class graph

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1
3

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

Consider the following color class graph

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1
3

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

1

2

1

build MST of
this graph

1

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

Consider the following color class graph

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1
3

Unfortunately:
1) There are many color classes (full graph too big)
2) They are high-dimensional (# of experiments), neighbor

search is very hard (LSH scheme seem to work poorly)

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

1

2

1

build MST of
this graph

1

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Each CQF key represents a kmer → can explicitly query neighbors
Each k-mer associated with color class id → vector of occurrences

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1

1

0

1

0

1

1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

1

0

0

0

0

Mantis implicitly represents a colored dBG

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

11

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

1

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

11

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

2

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

22

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

22

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

22

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

22

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

22

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v

4

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

4

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2 2

1

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

1

2

1
1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1

CCG derived from dbG

Complete CCG

MST on our Graph

3

Optimal MST

The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

0

0

0

0

0

The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

Augment with all 0 color class to guarantee one, connected MST

0

0

0

0

0
1

The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

Augment with all 0 color class to guarantee one, connected MST

0

0

0

0

0
1

{0}

{2,4}

{4}

{1,3}

The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2
2

1

Augment with all 0 color class to guarantee one, connected MST

0

0

0

0

0
1

{0}

{2,4}

{4}

{1,3}

To reconstruct a vector, walk from your node to the root,
flipping the parity of the positions you encounter on each edge.

The MST approach scales very well

dataset from SBT / SSBT / Mantis paper

Improvement
over RRR improves
with # of samples

now the
k-mer table

is the bottleneck

One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?

How does MST approach affect query time?

One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)
keeps it just as fast as lookup in the RRR matrix

How does MST approach affect query time?

Data from: https://www.ncbi.nlm.nih.gov/Traces/sra/sra_stat.cgi

A Call To Arms

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed”
— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond

