
Analyzing gene and
transcript expression

using RNA-seq (I)

DNA (a genome)

Basics of RNA-seq

DNA (a genome)

transcription (DNA ⇾ RNA)

Basics of RNA-seq

alternative splicing (isoforms/transcripts)

DNA (a genome)

transcription (DNA ⇾ RNA)

Basics of RNA-seq

alternative splicing (isoforms/transcripts)

DNA (a genome)

we sequence small bits of these

transcription (DNA ⇾ RNA)

Basics of RNA-seq

Actual protocols are much more involved

Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the
Expected Fragment Starting-Point and Coverage Profile." Journal of Computational Biology 24.3 (2017): 200-212.

Many uses of RNA-seq for transcriptome analysis

RNA-seq data has many uses in transcriptome analysis. Some
common uses include:

Transcript quantification

Differential expression, alternative splicing analysis

Fusion/chimera detection

Variant (SNP, SV, CNV) detection

Build higher-level models of transcription
co-expression networks -> regulatory networks

Transcript assembly
Genome guided & de novo

RNA-Seq reads come from a spliced transcript — if we can map them
back to the genome, they give us evidence of transcribed regions.

Image from: Shin, Heesun, et al. "Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without
Globin Depletion." PloS one 9.3 (2014): e91041.

Human genome contains > 14,000 pseudogenes [Pei et al. Genome
Biology 2012]

The benefit is reads are drawn directly from transcripts!

This means you see what is there, not just what is
annotated

Fusion/chimera detection

Variant (SNP, SV, CNV) detection

image from: http://biome.ewha.ac.kr:8080/FusionGene/

Find small (SNP) or large (SV) variation in how read
map back to their genes of origin

Find differences in the number of copies of a gene
in the DNA (CNV)

http://biome.ewha.ac.kr:8080/FusionGene/

Many uses of RNA-seq for transcriptome analysis

RNA-seq data has many uses in transcriptome analysis. Some
common uses include:

Transcript quantification

Differential expression, alternative splicing analysis

Fusion/chimera detection

Variant (SNP, SV, CNV) detection

Build higher-level models of transcription
co-expression networks -> regulatory networks

Transcript assembly
Genome guided & de novo

Into the Unknown : What to do when you don’t
have / trust your reference

Multiple types of “unknown”

I know the genome, but

not the annotation

There is no reliable

genome assembly

de novo transcriptome

assembly

Trinity, BinPacker, Bridger, Trans-
ABySS, SOAPdenovo-Trans

Transrate / Detonate

“gene” level: Grouper, Corset, Necklace

StringTie, Strawberry, Scallop,

 TransComb

txp level: e.g. Salmon

STAR, HISAT2, Kart, Subread

StringTie-merge, TACO

quant : same as when

you have a reference txome.

Into the Unknown : What to do when you don’t
have / trust your reference

Multiple types of “unknown”

I know the genome, but

not the annotation

There is no reliable

genome assembly

de novo transcriptome

assembly

Trinity, BinPacker, Bridger, Trans-
ABySS, SOAPdenovo-Trans

Transrate / Detonate

“gene” level: Grouper, Corset, Necklace

StringTie, Strawberry, Scallop,

 TransComb

txp level: e.g. Salmon

STAR, HISAT2, Kart, Subread

StringTie-merge, TACO

quant : same as when

you have a reference txome.

I’ll focus mostly on reference-guided assembly.

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 3

L E T T E R S

assembled super-reads as described above. Note
that Scripture had very low precision on both
data sets because it tends to predict a far larger
number of splice variants for each gene than the
other methods. On Sim-I, StringTie+SR found
20% more true transcripts than the next-best programs, with 34% fewer
false positives. Not surprisingly, StringTie’s improvement is much higher
on Sim-I than on the cleaner Sim-II data set, where the fragment sizes fol-
lowed a distribution that matched the built-in assumptions of Cufflinks.
Cufflinks in particular performed far better on Sim-II compared with
Sim-I, with sensitivity and precision just slightly below StringTie. All
other programs, however, were substantially lower than StringTie for
both precision and sensitivity on both data sets.

In principle, the other programs can also be provided with the
aligned super-reads as input, as done for StringTie+SR. We tried this
strategy with Cufflinks (the best assembler other than StringTie),
and both its sensitivity and precision declined substantially on Sim-I,
whereas on Sim-II it made only marginal improvements (results not
shown). By contrast, StringTie+SR performed better than StringTie
alone on both data sets, though only by a small amount. The limited
improvement is a consequence of the fact that the assembled super-
reads used here simply filled in the gap between a pair of reads.

The accuracies shown in Figure 2a represent all transcripts, includ-
ing those that were only partially covered by reads. We looked at how
well the assemblers did for those transcripts that were fully covered
by reads, that is, transcripts present at relatively higher levels in a
given sample (Fig. 2b). Figure 2b and Supplementary Table 1 present
the accuracy of all six programs on these fully covered transcripts.
Assembly accuracy was defined as above for transcripts, and we intro-
duce an analogous definition of gene-level accuracy; we considered
a gene to be correctly identified if at least one of its transcripts was
correctly assembled. Thus gene-level accuracy was always higher than
transcript-level accuracy.

In most cases, the assemblers’ accuracies in Figure 2b followed the
same ranking as in Figure 2a, which included partially covered tran-
scripts. StringTie+SR and StringTie performed the best on both sensitivity
and precision, followed by Cufflinks. For Sim-II, StringTie+SR showed an
increase of more than 5% over Cufflinks in both sensitivity and precision.
On Sim-I this increase was more than twice as great on both measures.
On both data sets, StringTie and StringTie+SR predicted at least one tran-
script perfectly matching the annotation for over 80% of the genes.

It is worth noting that Cufflinks is designed to eliminate isoforms
expressed at very low levels, on the assumption that those isoforms

may be incompletely spliced precursors or other artifacts. By default,
the Cufflinks threshold for filtering out low-abundance transcripts
is set to 10% of the most abundant isoform (computed separately for
each gene). We tried lowering this threshold for Sim-I and Sim-II,
which slightly increased Cufflinks’ sensitivity while reducing
its precision by a comparable amount. Like Cufflinks, StringTie
was also designed to eliminate assembled transcripts with very low
levels of expression. Figure 2a,b shows StringTie’s accuracy when
this filtering threshold was set to 10%, the same level as used by
Cufflinks. Interestingly, lowering the threshold to 5% for StringTie
still yielded better sensitivity and precision than Cufflinks yielded at
the 10% threshold (Supplementary Figs. 3 and 4). All other results
presented here use the 10% filter for both Cufflinks and StringTie
(Supplementary Discussion and Supplementary Fig. 5).

Assembly of reads reproduces the exon-intron structure of genes,
but we also need to estimate how much of each transcript was present
in the original cells. To evaluate the transcript quantification per-
formance of each program, we compared the estimated expres-
sion with the known amounts of each transcript in the simulated
data. Quantification is measured by the number of pairs of reads
 (“fragments” where one or both ends of a fragment are sequenced),
which are normalized based on the total number of fragments
sequenced (measured in millions) and by the length of the transcript
(measured in kilobases), giving an estimate measured as fragments
per kilobase of transcript per million fragments (FPKM). With the
exception of Scripture, all programs tested here use FPKM values to
estimate transcript abundances. StringTie also reports a read per base
coverage for each exon of a predicted transcript. Scripture produces
RPKM values, which count reads instead of fragments. As has been
pointed out previously13, FPKM is preferable to RPKM in the case
of paired-end RNA-seq experiments, where in some cases one of the
two reads belonging to a fragment might be unmapped, possibly lead-
ing to underestimates of expression. We obtained very similar results
whether using FPKM or RPKM values (Supplementary Table 2).

We computed the Spearman correlation coefficient between the true
and estimated expression levels for each set of transcripts. Specifically,
we compared the expression level of each predicted transcript with
the true transcript that it matched. The Spearman correlation first

RNA-seq reads

StringTie+SR StringTie Cufflinks Traph

Build splice graph

Maximum likelihood abundance
estimation

Build overlap graph Build flow network on top of
splice graph

Build flow network for path of heaviest
coverage

Compute maximum flow to estimate
abundance

Compute minimum path cover to
generate transcripts

Compute minimum cost flow and
decompose it into transcripts and

their abundances

Transcripts and their
abundances

Map super-reads and
unassembled reads to genome

Assemble reads
into super-reads

Map reads to genome

Update

Heaviest path

a

b

Figure 1 Transcript assembly pipelines for
StringTie, Cufflinks and Traph. (a) Overview of
the flow of the StringTie algorithm, compared
to Cufflinks and Traph. All methods begin with
a set of RNA-seq reads that have been mapped
to the genome. An optional secondary input to
StringTie is a set of pre-assembled super-reads,
designated as StringTie+SR. StringTie iteratively
extracts the heaviest path from a splice
graph, constructs a flow network, computes
maximum flow to estimate abundance, and
then updates the splice graph by removing
reads that were assigned by the flow algorithm.
This process repeats until all reads have been
assigned. (b) Annotated transcript T for which
read data covers only the fragments F1 and
F2. An assembler is given credit for a correct
reconstruction of T if it correctly assembles
F1 and F2.

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Outline of transcript assembly workflow

This step is done by spliced

aligners we discussed 

previously (e.g. STAR/HISAT2)

A detour: The splicing graph

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.

A detour: The splicing graph

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.

In reality we observe coverage by reads, not exons. 
Therefore, we end up building a slightly different  
(data-dependent) graph.

A detour: The splicing graph

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.

A detour: The splicing graph

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.

Building of Splice Graph
StringTie builds an alternative splicing graph (ASG)
from all reads at a genomic locus.

Skips this locus if too many (>95%) of the reads here are multi-
mapping

Otherwise, reads are naively given 1/k mass at each of
their k multi-mapping loci.

Splice graph is a DAG where nodes are contiguous genomic
regions not interrupted by spliced alignments, and edges
are placed between two nodes between which a spliced
alignment occurs.

Building of Splice Graph

ASG example (adapted from supp fig. 1)

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

1 2 3 4 5 6 7 8

1

2 3 4 5 6

7
8

s t

Processing the Splice Graph
StringTie identifies transcripts using the ASG with the
following iterative process:

1. Heuristically choose a “heavy” path (a path
with the heaviest node) in the ASG

2. Estimate path expression by computing max-
flow in a flow graph corresponding to this sub-
path of the ASG. Subtract the read mass
assigned to the nodes in this path & repeat.

Choosing a Heaviest Path
StringTie chooses the heaviest path greedily, as
follows (this is an O(n) algorithm):

Pick the ASG node with the highest per-base read
coverage.

Extend nodes to the source by adding to the path
the adjacent node with the largest # of compatible
read fragments.

Extend nodes to the sink by adding to the path the
adjacent node with the largest # of compatible read
fragments.

Supplementary Figure 12. The StringTie algorithm: RNA-seq reads are assembled into
super-reads (Step 1) and then super-reads plus un-assembled reads are mapped to the genome
(Step 2). In Step 3, mapped reads and super-reads are used to build an alternative splice graph.
We use the path from source (s) to sink (t) with the heaviest coverage to build a flow network
corresponding to the transcript represented by that path (Step 4). The maximum flow in this
network represents the coverage of one assembled transcript, which is removed from the splice
graph (Step 5). Steps 4 and 5 are repeated until no more transcripts can be assembled.

Nature Biotechnology: doi:10.1038/nbt.3122

Constructing the Flow Network

Note: The flow network is constructed separately for
each selected transcript — the network on which the
flow problem is solved does not correspond to the
entire ASG!

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Constructing the Flow Network

Supplementary Figure 13. Flow network associated with a transcript (shown with colored
nodes). 15 fragments (shown in grey) align to the transcript. Two nodes in the flow network are
connected iff a fragment starts and ends at those nodes. E.g., nodes 1 and 5 are connected
because fragment (a) starts at node 1 and ends at node 5. For each colored node in the
transcript, two nodes are created in the flow network. Capacities on edges (not connecting
source or sink) are shown in red.

Nature Biotechnology: doi:10.1038/nbt.3122

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Constructing the Flow Network

Supplementary Figure 13. Flow network associated with a transcript (shown with colored
nodes). 15 fragments (shown in grey) align to the transcript. Two nodes in the flow network are
connected iff a fragment starts and ends at those nodes. E.g., nodes 1 and 5 are connected
because fragment (a) starts at node 1 and ends at node 5. For each colored node in the
transcript, two nodes are created in the flow network. Capacities on edges (not connecting
source or sink) are shown in red.

Nature Biotechnology: doi:10.1038/nbt.3122

each node in ASG
becomes two nodes

in / out in flow network

capacity of “between” edges
is number of alignments
starting in one node and

ending in the other

“within” edges
may also have
a bias factor

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGY doi:10.1038/nbt.3122

 origin. These cases can be still modeled with a flow network where we associ-
ate a positive multiplier puv associated with edge (u, v)�E such that if a packet
of fuv units of flow enter node u, then by the time it reaches node v, the packet
contains puv fuv units of flow. If 0 < puv < 1, edge (u, v) is said to be lossy, and
if 1 < puv < ` is said to be gainy. In the flow network presented above puv = 1
for all edges (u, v)�E. If puv w 1 for at least one edge, the flow network is
called a generalized flow network, or a flow network with multipliers. Just as
in the standard maximum flow problem, in the generalized maximum flow
problem, the goal is to send as much flow as possible between two nodes,
subject to the edge capacity constraints. Also, flow can be ‘lost’ or ‘gained’ as
it is sent through the network. The maximum generalized flow problem is a
special case of linear programming, and it can be solved by general-purpose
linear programming techniques such as the primal simplex method33. Several
combinatorial methods that solve the program in polynomial time are also
described in the literature34.

Flow network design in StringTie. StringTie uses the generalized flow net-
work concept introduced above to compute the coverage associated with a
transcript path in the ASG. We start building the network by first creating
nodes corresponding to all the nodes in the ASG. We then connect any two
nodes by an edge if an alignment mapping (of a super-read, or of an unassem-
bled pair of reads) starts at one node and ends at the other (Supplementary
Fig. 13). The number of such alignments determines the capacity of an edge.
More specifically, if a fragment aligns in n places, than that fragment alignment
will contribute 1/n to the edge capacity. We then split the nodes in the flow
network into two nodes each, as follows. For each node v in the ASG, with the
exception of the source and sink, we introduce nodes vin and vout that “enter”
and “exit”, respectively, the initial ASG node. We connect these two nodes
with a new edge, and we set the capacity of that edge equal to the number of
fragments that align to the initial node in the ASG. We also associate with this
edge a multiplier that controls the biased distribution of fragments aligning
to any given node in the ASG. Such biases are often encountered in the reads
produced by next-generation sequencing technologies; for example, it is com-
mon to observe more reads near the 3` end of a transcript than the 5` end.

Special care needs to be taken to make the distribution of sequencing reads
more uniform25. In StringTie we attempt to reduce this coverage bias by nor-
malizing the distribution of reads entering and exiting a node in the ASG.
Formally, for each edge connecting a pair of nodes vin and vout in the network,
we associate the following multiplier, or bias factor:

b
w f

w fv
uvu ASG
vuu ASG

� �

�

£
£

()

() (1)(1)

where fxy is a fragment starting at node x and ending at node y, and w(fxy)
represents the weight associated with the fragment fxy. Similarly to Cufflinks,
we define w(fxy) =1/n, where n represents the number of fragment fxy map-
pings. Note that in the case of paired-end reads, the sequence of the fragment
fxy may not be completely known, but the two paired reads clearly define the
nodes x and y. Practically, the bias bv ensures that the proportion of fragments
fuv associated with a transcript path in the ASG is equal to the proportion of
fragments fvu that correspond to the same transcript.

With the exception of the edges connecting an ‘entering’ and an ‘exiting’
node, all the edges have multipliers equal to 1. Supplementary Figure 13
shows an example of the flow network associated with the transcript contain-
ing nodes 1, 3 and 5 in the ASG depicted in Supplementary Figure 12. Note
that the edge connecting nodes 1out and 5in is not present in the ASG, because
there is no splice variant that skips exon 3 and connects exons 1 and 5 directly.
However, we add this edge to the flow network to account for the fragment
that starts and ends at nodes 1 and 5 in the ASG.

The intuition behind this flow network design is that StringTie tries to stitch
compatible fragments together that will explain a maximal number of reads for
the underlying transcript path. In our implementation, two fragments (single
reads or pairs of reads) are considered to be compatible if one fragment starts
in the same node as the other one ends. The maximum flow in this network,
where the flow follows the bias factor restrictions imposed by equation (1)
above, represents the expression level associated with the predicted transcript.
As discussed above, the generalized maximum flow problem can be solved
efficiently in polynomial time. In contrast, Cufflinks formulates abundance
estimation as an expectation-maximization (E-M) computation, which can-
not be solved in polynomial time. In Supplementary Software 1 we provide
pseudocode that introduces the bias factors in the classical breadth-first search
implementation of the maximum flow algorithm.

StringTie is implemented in C++ and is freely available as open source
software at http://ccb.jhu.edu/software/stringtie (also see Supplementary
Software 1).

29. Pruitt, K.D., Tatusova, T., Klimke, W. & Maglott, D.R. NCBI Reference Sequences:
current status, policy and new initiatives. Nucleic Acids Res. 37, D32–D36
(2009).

30. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).
31. Ford, L. & Fulkerson, D. Flows in Networks (Princeton University Press, Princeton,

NJ, 1962).
32. Goldberg, A. & Tarjan, R. A new approach to the maximum-flow problem. JACM

35, 921–940 (1988).
33. Dantzig, G. Linear Programming and Extensions (Princeton University Press,

Princeton, NJ, 1962).
34. Goldberg, A., Plotkin, S. & Tardos, E. Combinatorial algorithms for the generalized

circulation problem. Math. Oper. Res. 16, 351–381 (1991).

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Constructing the Flow Network
Given the flow network, StringTie solves a generalized max-flow problem

generalized — edges may have multipliers (bias factors), so
flow may be gained or lost as it is sent through the network.

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

Flow Network
Source / Sink
Edge capacities

Find a flow that
is maximum

Satisfying

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

Constructing the Flow Network
Given the flow network, StringTie solves a generalized max-flow problem

generalized — edges may have multipliers (bias factors), so
flow may be gained or lost as it is sent through the network.

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

Flow Network
Source / Sink
Edge capacities

Find a flow that
is maximum

Satisfying

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3122

ONLINE METHODS
RNA-seq library preparation and sequencing. Nuclear RNA was prepared
from HEK293T (kidney) cells. Briefly, cells were lysed on ice for 5 min in
10 mM Tris-HCl pH 7.5, 10 mM NaCl, 0.2 mM EDTA, 0.05% NP-40, and
nuclei were spun at 2,500g for 3 min and then resuspended in QIAzol for RNA
isolation using the miRNeasy kit according to the manufacturer’s instructions
(Qiagen). The RNA-seq library was created using the Illumina TruSeq RNA
Sample Preparation Kit v2 with the standard protocol, and sequenced on one
lane of the HiSeq 2000 platform (100 bp, paired-end). Data are available at
NCBI as accession number SRP041943. The database of annotated protein
coding and noncoding genes (41,409 genes and 171,904 transcripts in total)
was produced by merging all annotated genes from the RefSeq database29, the
UCSC Browser24 and the Ensembl database30.

Identification and quantification of transcripts. StringTie’s approach to
reconstructing the transcriptome is depicted in Figure 1 and, in more detail,
in Supplementary Figure 12. The initial step is similar to other reference-
based transcriptome assemblers, in the sense that it relies on the output of
a specialized spliced-alignment program. However, StringTie incorporates
several key innovations, notably (i) a network flow algorithm to reconstruct
transcripts and quantitate them simultaneously; and (ii) the capacity to include
longer assembled reads, representing the full fragments from which the initial
paired-end reads were sequenced.

To reconstruct the fragments from their end sequences, we use a de novo
assembly algorithm that creates “super-reads.” Using the super-read software
from the MaSuRCA genome assembler28, we extend every read in both direc-
tions as long as this extension is unique. We then identify pairs of reads that
belong to the same super-read and extract the sequence containing the pair
plus the sequence between them; that is, the entire sequence of the original
DNA fragment. Thus, for example, if the original RNA-seq data comprised
paired 100-bp reads from a 300-bp fragment library, these steps will convert
many of those pairs into single, 300-bp super-reads. We then map the super-
reads to the reference genome. Note that the true super-read might be much
longer than the fragment, but we currently limit StringTie to the fragment
length. This restriction allows us to treat super-reads as single reads in the
algorithm, and therefore no special adjustment is required to evaluate their
contribution to transcript expression levels.

The advantage of using super-reads is twofold. First, when a gene sequence
is nonrepetitive, as coding sequences tend to be, we usually can reconstruct
fragments even if they span multiple exons. Second, more of the longer
sequences will map unambiguously to the genome, simplifying the assem-
bling of transcripts. We have designed StringTie to be run on any input BAM
file, regardless of whether it contains aligned read pairs or a combination of
these plus super-reads.

After the super-reads are mapped to the reference genome, StringTie next
builds an alternative splice graph (ASG) at each gene locus from all overlapping
reads at that locus. Note that if more than a certain percentage of the reads (by
default 95%) aligned in a gene locus are multi-mapped, then StringTie will
skip processing that locus. The ASG captures all possible transcripts that are
consistent with the mapped reads15,17, where nodes in the graph correspond
to contiguous regions of the genome that are uninterrupted by any spliced
read alignment, and directed edges correspond to reads that align across two
such nodes in the correct 5` to 3` order. Note that the nodes do not necessar-
ily correspond to whole exons in the transcripts; they may be only partial
exons, as illustrated by node 4 in Supplementary Figure 12 (see also node 1 in
Supplementary Fig. 1). We add a source and a sink (nodes s and t) to the ASG
so that any path from source to sink represents a possible transcript.

After building the ASG, StringTie iterates through the following two steps
(steps 4 and 5 in Supplementary Fig. 12):

(1) First it searches for the heaviest path, defined as the path with the
highest “path-compatible” read per base coverage, from source to
sink. Once a potential heaviest path is found, this path will constitute
an assembled transcript predicted by StringTie.

(2) Second, StringTie estimates the coverage level of the transcript by
solving a maximum-flow problem that determines the maximum
number of fragments that can be associated with the chosen transcript.

After the expression level of the transcript is computed, StringTie
removes the fragments that contributed to it, and updates the per-base
read coverage in the ASG.

StringTie ends the iteration through the two steps above when the coverage
of the heaviest path in the ASG drops below some fixed threshold (by default,
set to 2.5 reads per bp).

To find the heaviest path in the ASG, we use a heuristic algorithm that starts
at the node with the highest coverage (measured as average reads per base)
and then extends the path first to the source and then to the sink by choosing
the adjacent node with the highest number of compatible fragments with the
path built so far. Note that an adjacent node might have a higher coverage then
the one chosen to extend the path, but it will not be chosen if the fragments
covering that node are not be compatible with the path chosen up to that point.
Because every node in the splice graph is consulted at most once, our algorithm
for finding the heaviest path has a running time complexity of O(n), where n
represents the number of nodes in the splice graph.

The heaviest path in the ASG represents an assembled transcript, although
no coverage is yet associated with it. Although we employ a heuristic approach
to identify a transcript from the ASG, determining its coverage is essential to
finding the set of all paths that represent expressed transcripts. To determine
the coverage of a transcript, StringTie uses a flow network design that we
formally describe next.

Basic definitions. Formally, a network is defined to be any finite collection of
points, called nodes, together with a collection of directed edges (or arcs) that
connect particular pairs of these nodes. By convention, we do not allow an arc
to connect a node to itself, but we do allow more than one arc to connect the
same two nodes. We will be concerned only with connected networks in the
sense that every node can be reached from every other node by following a
sequence of arcs, where the direction of the arcs is ignored. In linear program-
ming, if a network is disconnected, then the problem it describes can be treated
as a number of separate problems, one for each connected subnetwork.

The underlying structure of a flow network is a directed graph, with its ver-
tices representing network nodes, and arcs representing the (existing or pos-
sible) connections between nodes. Mathematically, a flow network is defined
as a quadruple N = (G, s, t, c), where G = (V, E), with E # V × V, is a directed
graph with a set of vertices V and a set of directed edges E, s � V and t � V
are the source and the sink of the network, respectively, and c E R: l � is a
function that associates a positive capacity to each edge in the graph. We say
that a function f E R: l � is a flow over the network N if the following two
conditions are satisfied:

(1) 0 a f((u, v)) a c ((u, v)), for every (u, v)�E,
(2) 3(u, v)�E f((u, v)) = 3(v, u)�E f((v, u)), for every v�V, v w s, t.

The value of the flow is the quantity ||f|| = 3(s, v)�E f((s, v)). It is not hard to
show that ||f|| = 3(v, t)�E f((v, t)). The maximum flow problem is to find a flow
f with maximum value in N. Condition 1 above can be extended such that a
lower bound can be required for the flow going through an edge:

l f u v c u v u v Eu v(,) ((,)) ((,)), (,)a a �for every

In other words, we want to require that only some edges with capacities larger
than le be used. It has been shown in the literature that this problem can be
reduced to a standard maximum flow problem31. The maximum flow problem
is a well-studied problem in the field of optimization theory and can be solved
in strong polynomial time, with O(VElog(V2/E) complexity, where V and E
represent the number of nodes and edges, respectively32.

As described above, in traditional flow networks there is an implicit assump-
tion that flow is conserved on every edge; i.e., if fuv units flow into an edge
(u, v)�E at node u, then exactly the same fuv units will reach node v. Many
practical applications violate this conservation assumption. For example, we
can imagine a water distribution network model as a flow network, where if
some quantity of water is shipped across an open canal linking two nodes,
some is lost due to evaporation and seepage during transit, and the amount
reaching the destination will only be a fraction of the amount that left the

StringTie solves this generalized max-flow
problem using an augmenting path

algorithm

Recall: Max Flow
Flow network: G = (V, E, s, t, c)

Find a flow f : E →R+ of maximum value

Subject to:
(1) Capacity : 0 ≤ f(e) ≤ ce for all e ∈ E
(2) Conservation : For every v ∈ V (apart from s and t)

∑
e into v

f(e) = ∑
e′ � out of v

f(e′�)

Value of the flow is given by:

v(f) = ∑
e out of s

f(e)

The below slides follow 7.1 in Kleinberg & Tardos

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

This achieves a flow of value 20, which respects (1) and (2). Is it maximum?

20

20

20

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

This achieves a flow of value 20, which respects (1) and (2). Is it maximum? 
No, but now we are “stuck” by the edges we chose. What if we could “undo”
some of the flow?

20

20

20

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

This achieves a flow of value 20, which respects (1) and (2). Is it maximum? 
No, but now we are “stuck” by the edges we chose. What if we could “undo”
some of the flow?

20

20

2010

10

10

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

The “dotted” line here is a “backward” edge — it doesn’t exist in the original
graph. But flows realized using such residual edges can always be realized
in the original graph by changing the forward flows. This leads to the formal

idea of the residual graph.

20

20

2010

10

10

Recall: Basic Algorithm

If G is a flow network with a valid flow f, then the residual

Graph Gf:

Has the same node set as G 
 
for each e = (u,v) in G where f(e) < ce, Gf has an edge
e=(u,v) with capacity given by ce - f(e). 
 
for each e = (u,v) in G where f(e) > 0, Gf has an edge  
e’=(v,u) with capacity f(e) — these are “backward edges”

Recall: Basic Algorithm

Let bottleneck(P,f) for a simple s-t path P with flow f be
the minimum residual capacity of any edge on P. We
define the following subroutine:

augment(f,P) 
 let b = bottleneck(P,f) 
 for e = (u,v) in P 
 if e = (u,v) is forward 
 increase f(e) in G by b  
 else (u,v) is backward let e = (v,u) 
 decrease f(e) in G by b 
 endif 
 endfor 
 return f

Recall: Basic Algorithm

We can then find a maximum flow as follows

MaxFlow (G) 
 set f(e) = 0 for all e in G 
 while there is an s-t path in Gf  
 let P be a simple s-t path in Gf  
 f’ = augment(f, P) 
 f = f’ 
 Gf = Gf’  
 endwhile 
 return f

Recall: Basic Algorithm

s t

u

v

20

10

30

10

20

Initially, flow is 0, and Gf = G

Recall: Basic Algorithm

s t

u

v

10

10

10

S -> u -> v -> t is chosen, and we push 20 units across it

20

20

20

We update Gf

Recall: Basic Algorithm

s t

u

v

10

10

10

S -> v -> u -> t is chosen, and we push 10 units across it

20

20

20

Recall: Basic Algorithm

s t

u

v

20

S -> v -> u -> t is chosen, and we push 10 units across it

20

10

20

We update Gf

10

10

Recall: Basic Algorithm

s t

u

v

20

No more s-t paths in the residual graph. Algorithm terminates 
with v(f) = 30 (the maximum).

20

10

20

10

10

Recall: Basic Algorithm

This is the basic Ford-Fulkerson algorithm. Running time is O(mC)

s t

u

v

20

20

10

20

10

10

Strongly-polynomial algorithms exist (e.g. Dinitz-Edmonds-Karp O(nm2))

One can reduce Max Flow with minimum bounds to Max Flow

One can also add gain / loss as is necessary in StringTie

Bias-aware MaxFlow algorithm

Processing the Splice Graph
Repeat:

1. Heuristically choose a “heavy” path (a path
with the heaviest node) in the ASG

2. Estimate path expression by computing max-
flow in a flow graph corresponding to this sub-
path of the ASG. Subtract the read mass
assigned to the nodes in this path & repeat.

Until:
Coverage of heaviest path falls below 2.5
reads per-base

Interestingly: Unlike other approaches that try to use the
flow graph to find and quantify the paths, StringTie uses
a heuristic to select the transcript, and flow only to quantify
the selected path.

Supplementary Figure 2. A splice graph for a multi-isoform gene illustrating that
the minimal number of transcripts is not always the correct assembly of a set of
reads. The transcripts shown in (a) and (b) can both be represented by the splice graph shown
in (c), if we ignore the weights on the edges. The splice graph in (c) was actually generated from
the 5 transcripts in (a). The numbers on the edges of the splice graph represent the number of
transcripts sharing that particular edge of the graph. If we follow the parsimony principle to
generate the minimal number of transcripts from the splice graph, and ignore the coverage
levels associated with the underlying transcripts, we get the 4 transcripts shown in (b).

Nature Biotechnology: doi:10.1038/nbt.3122

Illustration of how coverage
information yields different

results from Cufflinks’ “parsimony”
approach

ASG

transcripts extracted
if we consider coverage

parsimonious set of “covering”
transcripts

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Results
©

20
15

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
ri

gh
ts

 r
es

er
ve

d.

4 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

L E T T E R S

converts all values to ranks; that is, the FPKM values f1, f2, f3, … from
largest to smallest are converted to rank values 1, 2, 3, …, and these
ranks are then correlated to compare each method’s predictions with
the true ranks. We found similar results using Pearson correlation
coefficients (Supplementary Table 3) with a log-transformed version
of abundances, that is, log2(x + 1), to prevent the correlation values
from being dominated by the most abundant transcripts and to avoid
problems with zero abundance counts.

Because the predicted transcripts do not always match the true
transcripts, we compared the quantification values as follows. First, if
a predicted transcript P failed to match any true expressed transcript,
than we matched P with a transcript that had an expression level of
zero. Second, if a true transcript T was not covered (even in part)
by any prediction, then we matched T with a prediction that had an
expression level of zero. If multiple predicted transcripts (transfrags)
were contained within a single true transcript, then we summed all
the reads assigned to the predicted transfrags and correlated this sum
with the expression level of the true transcript. Table 1 shows the cor-
relations between true and predicted expression levels for StringTie
and the four other transcriptome assemblers tested in this paper.

StringTie+SR and StringTie had similar performance, and both
were substantially better than Cufflinks (Table 1). Traph and IsoLasso
performed far worse, and Scripture’s expres-
sion levels consistently had a negative correla-
tion with the true values. Scripture’s negative
correlation values are a result of its strategy
of predicting far more transcripts than are
present in the actual data. (For example, on
the Sim-II data, Scripture produced ~60 times
as many incorrectly assembled transcripts as
StringTie. Scripture’s estimated RPKM values
for these incorrectly assembled transcripts
were also much higher than the estimated
FPKM values of the other assemblers; for
details see Supplementary Table 4.) All pro-
grams performed better when considering
only the genes they predicted, ignoring genes
that were present but that they failed to predict
(Table 1, Rpredicted versus Rall). However, the
trends for these genes remained the same, with

StringTie well ahead of Cufflinks, and the other programs far behind
(Supplementary Discussion and Supplementary Figs. 6 and 7).

Real data provide a better test of each program’s performance because
they have properties that are not accurately captured by simulations.
Repetitive regions in the human genome, wide variance in GC content,
isoform length and alternative splicing complexity are all factors that
influence performance27. However, we have no way of knowing, for
real data sets, precisely what genes and isoforms were expressed nor do
we know their expression levels. Nonetheless, we do have several well-
curated sets of human genes, for which the exon-intron structure has
been evaluated and validated in multiple experiments. If a predicted
transcript matches one of these ‘known’ genes from end to end, then it
is reasonable to infer that the gene was indeed present in the real data,
although its expression level remains uncertain. Therefore, for our
experiments on real data sets, we focused on measuring how many of
these well-curated genes were correctly predicted. We evaluated each
transcriptome assemblers’ predictions against a merged collection of all
annotated protein coding and noncoding genes (Online Methods).

Our real data included three human RNA-seq data sets from the
ENCODE project28, all of them strand-specific, and one unstranded
RNA-seq data set that we generated for this study using nuclear
RNA from a human kidney cell line. We downloaded the ENCODE

20

40

60

80

20

40

60

80

Sim-II

20

Sim-I

40

60

80

20

40

60

80

Gene Transcript

StringTie+SR StringTie Cufflinks Traph Scripture IsoLasso

30

35

40

45

Gene Transcript

30

35

40

45

50

55

50

55

20 40 60 80

Sensitivity (%)
a b

5 25 45 65

Sim-I Sim-II

Sensitivity (%)

Precision (%)

StringTie+SR StringTie Cufflinks Scripture IsoLasso Traph

Precision (%)

Figure 2 Transcriptome assemblers’ accuracies in detecting expressed transcripts from two simulated RNA-seq data sets. (a) Transcriptome assemblers’
accuracies in detecting expressed transcripts from two simulated RNA-seq data sets. In data set Sim-I (left), the fragment sizes follow an empirical
distribution based on Illumina sequences, and in Sim-II (right) the fragment sizes follow a parameterized normal distribution. StringTie+SR pre-
assembles the reads into super-reads when possible. (b) Accuracy of transcriptome assemblers on gene loci from the same two data sets, considering
only those transcripts that were completely covered by input reads. Scripture’s precision on Sim-I was 17.7%, below the 20% minimum shown here.

Table 1 Transcriptome assemblers’ performances on simulated and real data
Data set Measure StringTie+SR StringTie Cufflinks Traph Scripture IsoLasso

Sim-I Rall 0.648 0.646 0.551 0.080 −0.361 0.162
Rpredicted 0.871 0.878 0.826 0.432 −0.228 0.500

Sim–II Rall 0.799 0.787 0.720 0.310 −0.435 0.000
Rpredicted 0.913 0.907 0.883 0.524 −0.301 0.258

Kidney Genes 10,773 10,659 7,774 n/a 7,813 2,785
Transcripts 13,900 13,720 9,245 n/a 13,833 3,191

Blood Genes 9,198 8,938 6,073 n/a 6,533 3,526
Transcripts 11,489 10,990 7,187 n/a 11,213 4,124

Lung Genes 10,913 10,779 8,566 n/a 7,070 3,590
Transcripts 14,055 13,706 10,370 n/a 12,559 4,187

Monocytes Genes 9,005 8,859 6,351 n/a 6,244 3,020
Transcripts 11,059 10,748 7,502 n/a 1,1046 3,528

Results on simulated data show the Spearman correlation coefficient between the real and predicted number of
reads (measured by RPKM values for Scripture and FPKM values for all other programs) for each of the assemblers
considered in this study. Rows labeled “Rall” include all true and predicted transcripts. Rows labeled “Rpredicted”
include all predictions but exclude true transcripts that were not predicted by a given program. For the four real data
sets, shown are the number of genes and transcripts exactly matching known annotation. Traph was unable to process
any of the real data sets.

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Results

©
20

15
N

at
ur

e
A

m
er

ic
a,

 In
c.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 5

L E T T E R S

data sets from the UCSC genome browser
(http://genome.ucsc.edu/cgi-bin/hgFileU
i?db=hg19&g=wgEncodeCshlLongRnaS
eq), and we chose them to represent three
different tissues: whole B cells in blood
(GEO accession GSM981256), the cytosol
of fetal lung fibroblasts (GSM981244) and
CD14-positive monocytes (GSM984609).
These samples contained 90 million 76-bp
paired-end reads, 145 million 101-bp paired-
end reads and 120 million 76-bp paired-end
reads, respectively. For our own data set,
we used an RNA-seq library, prepared with
the standard unstranded Illumina TruSeq
method and sequenced to yield ~180 mil-
lion 100-bp paired-end reads with an aver-
age fragment length of 177 bp. We mapped
reads using TopHat2, and assembled super-
reads using MaSuRCA. Aligned paired reads
outputted by TopHat2 were provided to
StringTie, Cufflinks, Scripture, IsoLasso and
Traph. For StringTie+SR, reconstructed fragments from super-reads
assembled by MaSuRCA were aligned by TopHat2 and provided as
additional input. Note that Traph would not run on any of these data
sets and was not included in the results below.

Many of the transcripts produced by the various assemblers did
not match any annotated genes. Supplementary Table 5 shows
the total number of transcripts predicted by each transcriptome
assembler. Because these were real data, we could not determine
which if any of these were false-positive predictions, both because
the annotation databases were incomplete and because we did not
know which genes were truly present in the sample. Nevertheless,
we can evaluate sensitivity for known genes. If we counted all
predictions not matching the annotation as false positives, then all
methods would be equally penalized for excessive gene predictions.
Using this approach, StringTie had substantially greater sensitivity
than all competing methods at detecting genes in the current human
genome annotation (Fig. 3). It obtained this relatively high sensitivity
while at the same time having a lower apparent false-positive rate (i.e.,
better precision) than Cufflinks, which was the next-best assembler
on all four real data sets.

As in the simulation experiment, we considered a gene to be identi-
fied correctly if the assembler predicted the correct intron chain for
at least one isoform. Overall, StringTie+SR and StringTie performed
very similarly, and both outperformed all other programs on all four
data sets, as measured both by sensitivity and precision at identifying
annotated transcripts. Figure 3 shows the accuracy of the various pro-
grams on fully covered transcripts; these were transcripts for which
all internal exons were fully covered by reads in the input alignment,
and each intron had at least one spliced read aligned across it. (See
Supplementary Table 6 for the exact number of fully covered tran-
scripts in each data set.) Because many overlapping splice variants are
present at most loci, the number of transcripts covered by reads is less
than the number actually present in the sample. This explains the low
absolute sensitivity for all programs at the transcript level.

Table 1 shows the number of correctly identified genes and tran-
scripts by the programs tested on all four real data sets. StringTie+SR
correctly predicted 27% more genes than were predicted by the next
most sensitive program. Compared with Cufflinks, StringTie+SR and
StringTie predicted 48% and 44% more known transcripts, on average,
in these four data sets. Notably, on the blood data set StringTie+SR

predicted 60% more transcripts than Cufflinks (11,489 versus 7,187,
an increase of 4,302). All programs were run using their default
parameters. Changing these parameters tended to increase sensitivity
while lowering precision, although in some cases we were able to
obtain a slightly better accuracy (Supplementary Table 7). However,
the improvements in accuracy were not consistent across all four data
sets when using the same set of parameters, and they were never close
to the levels achieved by StringTie.

Table 1 also shows that on all four data sets, Scripture produced
almost as many transcripts (though fewer genes) matching the anno-
tation as StringTie+SR. As reflected by Scripture’s performance on
the simulated data, this sensitivity at the transcript level derived from
its strategy of predicting a near-exhaustive list of all possible splice
variants for a given gene. This is reflected in the statistic that whereas
the other programs assembled an average of 1.6–2.0 transcripts per
locus, Scripture predicted an average of 21.6 transcripts per locus
across the four real data sets.

StringTie and StringTie+SR took less than 30 min to complete on
the two sets of simulated data, whereas the other four programs took
between 81 min (Cufflinks) and 48 h (Traph). On the real data sets,
StringTie required from 35–76 min and was more than three times
faster than the fastest of the other four programs, and in some cases
over 50 times faster. Wall clock and CPU times for all assemblers on all
data sets are shown in Supplementary Tables 8 and 9, respectively.

All of the transcriptome assemblers have a large memory footprint.
These memory requirements are usually unavoidable for transcrip-
tome assembly owing to the vast amount of RNA-seq data that need
to be processed in memory at once. For example, in highly expressed
transcripts, the bundle of reads that come from the same gene locus
can easily total over 2 million reads. To store and analyze these reads
requires alignment start and end positions, positions of mismatches
and indels, strand information and mate pair information. On the
four real data sets used here, the maximum memory used by StringTie
varied between 1.6 gigabytes (GB) and 12 GB. Cufflinks, IsoLasso and
Scripture had memory requirements ranging from 6.4 to 26.6 GB on
the same data (Supplementary Table 10).

It is feasible that StringTie was superior to Cufflinks because it
did a better job at identifying the dominant transcript for a gene
locus. Alternatively, it might have had an advantage on genes with
larger numbers of exons or genes with more isoforms. To tease apart

Sensitivity (%)
Kidney

55

35

15
20 35 50 65 20 35 50 65 25 40 55 70 15 30 45 60

301504020000

25

20

15

10
10 20 30 3015

60

40

20

20

15

10

5

60

40

20

20

15

10

5

60

40

20

20

15

10

5

Blood Lung Monocytes

Precision(%)IsoLassoScriptureCufflinksString TieString Tie+SR

T
ra

ns
cr

ip
t l

ev
el

G
en

e
le

ve
l

Figure 3 Accuracy of transcript assemblers at assembling known genes, measured on real data
sets from four different tissues. Known genes are defined as those annotated in either the RefSeq,
UCSC or Ensembl human gene databases. Gene level sensitivity (y axis) measures the percentage of
genes for which a program got at least one isoform correct, whereas transcript sensitivity measures
the percentage of known transcripts that were correctly assembled. Precision (x axis) is measured
as the percentage of all predicted genes (transcripts) that match an annotated gene (transcript).

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

StringTie Identifies More Transcripts Than Cufflinks

Supplementary Table 9. Total CPU time used by the three fastest transcriptome assemblers
on two simulated and four real data sets. Time, shown in minutes, represents the sum of CPU
time on all threads (parallel processes). All programs were run on the same multi-core 2.1 GHz
Opteron servers.

 StringTie+SR StringTie Cufflinks IsoLasso
Sim-I 18.8 23.2 400.8 165.5
Sim-II 15.3 36.5 368.8 108.1
Kidney 48.2 95.1 2369.6 298.5
Blood 125.0 130.1 2166.5 305.2
Lung 142.5 135.8 4869.0 326.1
Monocytes 92.3 93.6 2491.7 383.9

Supplementary Table 10. Maximum memory occupied by different transcriptome
assemblers when processing four real data sets. StringTie’s memory requirements can be
decreased further by using the optional parameter –s (though it was not used for these
experiments), which limits the number of reads (by default set to 1,000,000) that can be
processed in any given bundle, where a bundle is a set of reads that come from the same gene
locus.

 StringTie+SR StringTie Cufflinks Scripture IsoLasso
Kidney 11.7Gb 12Gb 26.6Gb 24.4Gb 20.4Gb
Blood 4.7Gb 4.3Gb 6.4Gb 16Gb 13Gb
Lung 6.9Gb 6.4Gb 7Gb 22.2Gb 8.8Gb
Monocytes 1.6Gb 1.8Gb 6.6Gb 17.7Gb 13.2Gb

Supplementary Table 11. Symmetric differences beween StringTie and Cufflinks on four real
data sets. For each data set, the table shows the number of transcripts identified correctly by
StringTie but missed by Cufflinks, the number identified by Cufflinks but missed by StringTie,
and the number identified correctly by both programs.

Data set Unique to StringTie Unique to Cufflinks Common to both
Kidney 6652 2177 7068
Blood 5834 2031 5156
Lung 5272 1937 8434
Monocytes 5296 2050 5452

Nature Biotechnology: doi:10.1038/nbt.3122
Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.

Scallop improves assembly by preserving “phasing paths”

phasing paths = sub-paths of the splicing graph where read evidence
supports >1 splicing junction.

Scallop preserves observed sub-paths.
Shao, Mingfu, and Carl Kingsford. "Accurate assembly of transcripts through phase-preserving graph decomposition." Nature biotechnology 35.12 (2017): 1167.

Preserving “phasing paths” improves accuracy

Shao, Mingfu, and Carl Kingsford. "Accurate assembly of transcripts through phase-preserving graph decomposition." Nature biotechnology 35.12 (2017): 1167.

Some other interesting assemblers

These methods, in particular, solve  
identification and quantification
simultaneously. 
 
Conceptually, this seems like the
strongest approach 
given how related the problems are.

