Lecture 1:
What is an algorithm?
modified from CLRS
Def: An algorithm is a well-defined computational procedure that takes some value or set of values as input and produces some value or set of values as output.
An algorithm is a procedure for solving some well-defined computational problem.

Key Properties: Correct - that is, we can prove it solves the problem.
Efficient - We will spend effort formalizing this later, but we want the amount of computation (and space) to be polynomial in the length of the input.

Computational Problems (a 5 problem case study)
$K+T$ (1.2)

- Seemingly similar problems, but with drastically different complexities.
(1) Interval Scheduling:

Given: $R=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, a set of requests such that only a single request can be accomodated at a particular time.
Find: The subset $A(A \subseteq R)$ of requests that can be satisfied with the largest cardinality.
Def: Request x_{i} and x_{j} are compatible iff $\operatorname{start}\left(x_{j}\right) \geqslant \operatorname{end}\left(x_{i}\right)$ or start $\left(x_{i}\right) \geqslant$ end $\left(x_{j}\right)$
Def: A set A f requests is compatible if for all $x_{i}, x_{j} \in A$, with $x_{i} \neq x_{j}$, x_{i} and x_{j} are compatible.

Here, the maximum t is of cardinality 4 and the is only 1 subset of this size.
NOTE: In general, solutions are not unique.

- We will see that IS can be solved efficiently in $O(n \lg n)$ time, using a greedy
approach. approach.
(2) Weighted Interval Scheduling (WIS) Same as $\frac{I S}{>0}$ except that, $\forall x_{i} \in R$, there is a weight $\omega_{i}>0$.

Find: A subset $A \in R$ that is compatible and such that $\sum_{x_{i} \in t} \omega_{i}=$ weight (A) is maximum.

- the addition of weights changes the nature of the problem. Assume $\omega_{i}>\sum_{j \neq i} w_{j}$. Then, any solution must include x_{i} regardless of the other thing es it contains.
- However, in th case that $\omega_{1}=\omega_{2}=\ldots=\omega_{n}$, we should obtain an algo. that Solves IS.
- We say that WIS is a generalization of IS.
(3) Bipartite Matching

Def: Bipartite: A graph is bipartite of the vertex set can be decomposed as $V=X U Y$ such that $\forall e=\{u, v\} \in E$, either $v \in X$ and $v \in Y$ or $u \in Y$ and $v \in X$

Def: Matching: A matching in a graph $G=(V, E)$ is a subset of edges $M \leq E$ such that each node in V appears in at most one edge of M.
Given: A bipartite graph $G=(V, E)$.
Find: A matching $M \leq E$ of maximum size.
We will see how this can be solved via a process of augmentation; as an instance of a network flow problem. Complexity of $O(\mathrm{mn})$.
(4) Independent Set (ISet)

Given: A general, undirected graph $G=(V, E)$.
Find: A subset $S \leq V$ of V of maximum size such that S is independent.

Def: S is independent if $\forall u, v \in S$, $\{u, v\} \notin E$.
Example:

$\{1,4,5,6\}$ is a MIS of G.

Q: MIS is strictly mare general than IS or bipartite Matching, why?

A: We can represent IS a $B M$ as instances of MIS.
How?
IS \rightarrow HIS
Define $G=(U, E)$ whee V is the set R of intervals and $E=\{\{u, v\} \mid u, v \in R$ and u overlaps with $v\}$.
Independent Sets are just compatible subsets of intervals, and the MIS is the largest such set.

Q: What makes IS easier than MIS?
A: Special structure (order on the intervals).
$B M \rightarrow M I S$
Given bipartite $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ define
$G=(V, E)$ where $V=E^{\prime}$ (nodes of G are edges of G^{\prime})
$E=\left\{\{u, v\} \mid u, v \in V\right.$ and u, v share an endpoint in $\left.V^{\prime}\right\}$
The MIS in G corresponds to a $B M$ in G^{\prime}
\Rightarrow There are MIS instances that cannot arise as encodinys of $B M$.

MIS is an NP-complete problem. We believe there is no algorithm to solve general (arbitrary) instances of MIS that run in time/space of the form $O\left(n^{k}\right)$ for some constant k.

But: Assume I want to prove to you that G contains some ISet of size m. Verifying this is easy. I give you the set S such that $|S|=m$, and you can verify if all vertices in S are independent.
\uparrow
there seems to be a fundamental difference between solving the problem \& checking a solution
to the problem? to the problem.
(5) Competitive Facility Location

2 player game
Given a graph $G=(U, E)$ and a value function such that value $\left(v_{i}\right)=b_{i}$, Each player Selects nodes to increase the overall value of the set of nodes they own. 2 adjacent nodes cannot be occupied (i.e. if $\{u, v\} \in E$ and u is occupied, a player cannot choose V).
Q: If 2 players alternate turns, and p_{1} goes first, can P_{2} obtain a set of vertices of some value $B \rightarrow$?
CFL is PSPACE-complete:

- Does not appear to be a trivial
"verification" process for such problems.

Can we solve with $B=20$? Yes
Can we sole with $B=25$? No

Not only is the strategy hard to derive, but even convincing/proving that a winning strategy exists is hard.

This is PSPACE -complete.
Believed to be strictly harder than NP-complete. May "games" reside in this category of problems.

