
CSE 373: Gap Penalties
(structural constraints) and
Linear Space Alignment

slides (w/*) courtesy of Carl Kingsford

General Gap Penalties

• Currently, the score of a run of k gaps is sgap × k

• It might be more realistic to support general gap penalty, so
that the score of a run of k gaps is |gscore(k)| < |(sgap × k)|.

• Then, the optimization will prefer to group gaps together.

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT” into the first string could change
it into the second — Biologically, this is much more likely as x
could be transformed into y in “one fell swoop”.

*

General Gap Penalties — The
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

Previous DP no longer works with general gap penalties.

Why?

*

General Gap Penalties — The
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

The score of the last character depends on details of the
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

We need to “know” how long a final run of gaps is in order
to give a score to the last subproblem.

*

General Gap Penalties — The
Problem

The score of the last character depends on details of the
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

*

Knowing the optimal alignment at the substring
ending here.

Doesn’t let us simply build the optimal alignment
ending here.

Three Matrices
We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1 k j

Y(i, j � k) + gscore(k) for 1 k j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1 k i

X(i� k, j) + gscore(k) for 1 k i

*

The M Matrix
We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment
ends in a match/mismatch.

A
G

Any kind of alignment is allowed
before the match/mismatch.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

*

G---
ACGT

The X (and Y) matrices

i
-
G

j-k j

k
x

y

G---
-CGT

i
-
G

j-k j

k
x

y

GCGT

i
-
G

j-k j

k
x

y

This case is automatically
handled.

k decides how long to make
the gap.

We have to make the whole
gap at once in order to
know how to score it.

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1 k j

Y(i, j � k) + gscore(k) for 1 k j

*

Running Time for Gap Penalties

Runtime:

• Assume |X| = |Y| = n for simplicity: 3n2 subproblems

• 2n2 subproblems take O(n) time to solve (because we have to try all k)

⇒ O(n3) total time

Final score is max {M(n,m), X(n,m), Y(n,m)}.

How do you do the traceback?

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1 k j

Y(i, j � k) + gscore(k) for 1 k j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1 k i

X(i� k, j) + gscore(k) for 1 k i

*

Affine Gap Penalties
• O(n3) for general gap penalties is usually too slow...

• We can still encourage spaces to group together using a special
case of general penalties called affine gap penalties:

gstart = the cost of starting a gap

gextend = the cost of extending a gap by one more space

gscore(k) = gstart + (k-1) x gextend

-g
sc

or
e(

k)

Affine gap penalty

gstart

(k-1)*gextend

1

-g
sc

or
e(

k)

Convex gap penalty

-g
sc

or
e(

k)

length of gap

General gap penalty

less restrictive ⇒ more restrictive

length of gap length of gap

Benefit of Affine Gap Penalties

• Same idea of using 3 matrices, but now we don’t need to search
over all gap lengths, we just have to know whether we are
starting a new gap or not.

*

Affine Gap as Finite State Machine

M

Y X

match(i,j)

gege

match(i,j)

gs+ge
gs+ge

match(i,j)

gs+ge

gs+ge

*

Affine Gap Penalties

gap in x

gap in y

(mis)match
between
x and y

If previous
alignment ends in
(mis)match, this
is a new gap

M(i, j) = score(xi, yi) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

8
>><

>>:

gstart +M(i, j � 1)

gextend +X(i, j � 1)

gstart +Y(i, j � 1)

Y(i, j) = max

8
>><

>>:

gstart +M(i� 1, j)

gstart +X(i� 1, j)

gextend +Y(i� 1, j)

If we’re using the
X matrix, then
we’re extending a
gap.

If we’re using the
Y matrix, then
we’re starting a
new gap in this
string.

*

Affine Base Cases (Global)

• M(0, i) = “score of best alignment between 0 characters of x and i
characters of y that ends in a match” = -∞ because no such alignment
can exist.

• X(0, i) = “score of best alignment between 0 characters of x and i
characters of y that ends in a gap in x” = gap_start + (i-1) × gap_extend
because this alignment looks like:

• X(i, 0) = “score of best alignment between i characters of x and 0
characters of y that ends in a gap in X” = -∞

• M(i, 0) = M(0, i) and Y(0, i) and Y(i, 0) are computed using the same logic
as X(i, 0) and X(0, i)

yyyyyyyyy

xxxxxxxxx-

← not allowed

*

Affine Gap Runtime

• 3mn subproblems

• Each one takes constant time

• Total runtime O(mn):

• back to the run time of the basic running time.

Traceback

• Arrows now can point between matrices.

• The possible arrows are given, as usual, by the recurrence.

• E.g. What arrows are possible leaving a cell in the M matrix?

*

Why do you “need” 3 functions?

• Alternative WRONG algorithm:

M(i,j) = max(

 M(i-1, j-1) + cost(xi, yj),

 M(i-1, j) +(gstart if Arrow(i-1, j) != , else gextend),

 M(j, i-1) + (gstart if Arrow(i, j-1) != , else gextend)

)

WRONG Intuition: we only need to know whether we are starting a gap or
extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we
can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends
in a match.

The best alignment
up to this cell ends

in a gap.
PROBLEM: The best alignment for strings
x[1..i] and y[1..j] doesn’t have to be used
in the best alignment between  
x[1..i+1] and y[1..j+1]

*

Why 3 Matrices: Example

CART
CA-T

match = 5, mismatch = -2, gap = -1, gap_start = -10

OPT(4, 3) = optimal score = 15 - 10 = 5

CARTS
CA-T-

WRONG(5, 3) = 15 - 10 - 10

CARTS
CAT--

OPT(5, 3) = 10 - 2 - 10 - 1

this is why we need to keep the X and Y matrices around.  
they tell us the score of ending with a gap in one of the sequences.

= -5

= -3

*

x=CARTS, y=CAT

Side Note: Lower Bounds
• Suppose the lengths of x and y are n.

• Clearly, need at least Ω(n) time to find their global alignment  
(have to read the strings!)

• The DP algorithms show global alignment can be done in O(n2) time.

• A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n2 / log n) time.

• We probably won’t talk about the Four Russians Speedup.

• The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzev, 1970)

• Open questions: Can we do better? Can we prove that we can’t do
better? No#

*
#: Backurs, Arturs, and Piotr Indyk. "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)." Proceedings of the forty-

seventh annual ACM symposium on Theory of computing. ACM, 2015.

Space is often the limiting factor

O(nm) time is a problem, but as I’ve said, we strongly
believe we can’t to much better.

Can we do better in terms of space?

It turns out we can — at the same asymptotic time
complexity!

Combining dynamic programming with the divide-and-
conquer algorithm design technique.

Hirshberg’s algorithm

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Consider our DP matrix:

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?
These

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

If we fill rows left - right, and bottom to top, to fill in
row i, we only need scores from row i-1.

Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Columns also work; if we go left - right, and bottom to
top, to fill in column i, we only need scores from col i-1.

Warmup — optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in
row i, we only need scores from row i-1.

Thus, we can compute the optimal score, keeping
at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the
strings, and so we can compute the optimal score, in
linear space.

How can we compute the optimal alignment?

This method won’t work for computing the optimal
alignment; we need all rows to be able to follow the
backtracking arrows.

How can we find the optimal alignment in linear
space?

Hirschberg’s algorithm provides a solution.

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted row?

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of x against all of y in this row

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted column?

x

y

Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against all of x in this column

x

y

Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith
column. How do we get these values efficiently?

x

y

Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith
column. Easy if we fill in by columns instead of rows.

x

y

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Consider filling in the DP matrix from the opposite
direction (top right to bottom left)

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Optimal alignment between x[8:] and y[6:]

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

This lets us compute optimal score between a suffix of
x with all suffixes of y

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8

What about suffixes?

This lets us build up optimal alignments for increasing
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

What about suffixes?

This lets us build up optimal alignments for increasing
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

What about suffixes?

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

note: the slight change in indexing here. It will make
writing our solution easier.

Finding the optimal alignment

How does this help us compute the optimal alignment
in linear space?

Algorithmic idea: Combine both dynamic programs
using divide-and-conquer

Divide-and-conquer splits a problem into smaller sub-
problems and combines the results (much like DP).

Examples: MergeSort & Karatsuba multiplication

Think about this in “graph” land
What do we know about the structure of the optimal
path in our “edit-DAG”?

Think about this in “graph” land
Can’t get from here to there without passing through
the middle.

Finding the optimal alignment
Consider the middle column — we know that the
optimal aln. must use some cell in this column;
which one?

Finding the optimal alignment
It uses the cell (i,j) such that OPT[i,j] + OPT’[i,j] has the
highest score. Equivalently, the best path uses some vertex v
in the middle col. and glues together the best paths from the
source to v and from v to the sink.

Finding the optimal alignment
Claim: OPT[i,j] and OPT’[i,j] can be computed in
linear space using the trick from above for finding
an optimal score in linear space

Algorithmic Idea
Devise a D&C algorithm that finds the optimal
alignment path recursively, using the space-
efficient scoring algorithm for each subproblem.

D&C Alignment

DCAlignment(x, y):
 n = |x|
 m = |y|
 if m <= 2 or n <= 2:
 use “normal” DP to compute OPT(x, y)
 compute space-efficient OPT(x[1:n/2], y)
 compute space-efficient OPT’(x[n/2+1:n], y)
 let q be the index maximizing OPT[n/2,q] + OPT’[n/2,q]
 add back pointer of (n/2,q) to the optimal alignment P
 DCAlignment(x[1:n/2], y[1:q])
 DCAlignment(x[n/2+1:n], y[q+1:m])
 return P

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 288)

D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

How can we show that this entire process still takes
quadratic time?

Let T(n,m) be the running time on strings x and y of
length n and m, respectively. We have:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

DCAlignment(x[1:n/2], y[1:q]) DCAlignment(x[n/2+1:n], y[q+1:m])

with base cases:

T(n,2) ≤ cn
T(2,m) ≤ cm

D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

Base:
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

Problem: we don’t know what q is. First, assume both
x and y have length n and q=n/2
(will remove this restriction later)

T(n) ≤ 2T(n/2) + cn2

This recursion solves as T(n) = O(n2)
Leads us to guess T(n,m) grows like O(nm)

Smarter Induction

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ knm

Base:
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)
 ≤ cnm + kqn/2 + k(m-q)n/2
 ≤ cnm + kqn/2 + kmn/2 - kqn/2

 = [c+(k/2)] mn

Proof:

Thus, our proof holds if k=2c, and T(n,m) = O(nm) QED

Conclusion
Trivially, we can compute the cost of an optimal
alignment in linear space

By arranging subproblems intelligently we can define a
“reverse” DP that works on suffixes instead of prefixes

Combining the “forward” and “reverse” DP using a
divide and conquer technique, we can compute the
optimal solution (not just the score) in linear space.

This still only takes O(nm) time; constant factor more
work than the “forward”-only algorithm.

Recap

• General gap penalties require 3 matrices and O(n3) time.

• Affine gap penalties require 3 matrices, but only O(n2) time.

• Sub-quadratic time general alignment is likely not possible.

• Linear space alignment can be obtained at no asymptotic cost to
runtime.

*

