CSE 373: Gap Penalties (structural constraints) and Linear Space Alignment

General Gap Penalties

$$
\begin{array}{lll}
\text { AAAGAATTCA } & \text { vs. } & \text { AAAGAATTCA } \\
\text { A-A-A-T-CA } & \text { AAA----TCA }
\end{array}
$$

These have the same score, but the second one is often more plausible.

A single insertion of "GAAT" into the first string could change it into the second - Biologically, this is much more likely as \mathbf{x} could be transformed into \mathbf{y} in "one fell swoop".

- Currently, the score of a run of k gaps is $s_{\text {gap }} \times k$
- It might be more realistic to support general gap penalty, so that the score of a run of k gaps is Igscore $(k)\left|<\|\left(s_{\text {gap }} \times k\right)\right|$.
- Then, the optimization will prefer to group gaps together.

General Gap Penalties - The Problem

AAAGAATTCA
$A-A-A-T-C A$
vs. AAAGAATTCA

Previous DP no longer works with general gap penalties.

Why?

General Gap Penalties - The Problem

AAAGAATTCA
A-A-A-T-CA
VS.
AAAGAATTCA
AAA-ーー-TCA

The score of the last character depends on details of the previous alignment:

$$
\begin{aligned}
& \text { AAAGAAC } \\
& \text { AAA }---
\end{aligned}
$$

VS.

$$
\begin{array}{l|l}
\text { AAAGAA } \\
\text { AAA }----
\end{array}
$$

We need to "know" how long a final run of gaps is in order to give a score to the last subproblem.

General Gap Penalties - The

 ProblemThe score of the last character depends on details of the previous alignment:

Knowing the optimal alignment at the substring ending here.

Doesn't let us simply build the optimal alignment ending here.

Three Matrices

We now keep 3 different matrices:
$M(i, j)=$ score of best alignment of $x[1 . . i]$ and $y[1 . . j]$ ending with a charactercharacter match or mismatch.
$X(i, j)=$ score of best alignment of $\mathrm{x}[1 . . \mathrm{i}]$ and $\mathrm{y}[1 . . \mathrm{j}]$ ending with a gap in X .
$Y(i, j)=$ score of best alignment of $x[1 . . i]$ and $y[1 . . j]$ ending with a gap in Y.

$$
\begin{aligned}
& \mathrm{M}(i, j)=\operatorname{score}\left(x_{i}, y_{j}\right)+\max \left\{\begin{array}{l}
\mathrm{M}(i-1, j-1) \\
\mathrm{X}(i-1, j-1) \\
\mathrm{Y}(i-1, j-1)
\end{array}\right. \\
& \mathrm{X}(i, j)=\max \begin{cases}\mathrm{M}(i, j-k)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq j \\
\mathrm{Y}(i, j-k)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq j\end{cases} \\
& \mathrm{Y}(i, j)=\max \begin{cases}\mathrm{M}(i-k, j)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq i \\
\mathrm{X}(i-k, j)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq i\end{cases}
\end{aligned}
$$

The M Matrix

We now keep 3 different matrices:
$M(i, j)=$ score of best alignment of $\mathrm{x}[1 . . \mathrm{i}]$ and $\mathrm{y}[1 . . \mathrm{j}]$ ending with a charactercharacter match or mismatch.
$X(i, j)=$ score of best alignment of $\mathrm{x}[1 . . \mathrm{i}]$ and $\mathrm{y}[1 . . \mathrm{j}]$ ending with a gap in X .
$Y(i, j)=$ score of best alignment of $x[1 . . i]$ and $y[1 . . j]$ ending with a gap in Y.
By definition, alignment
$\mathrm{M}(i, j)=\operatorname{score}\left(x_{i}, y_{j}\right)+\max \{$

$$
\begin{aligned}
& \mathrm{M}(i-1, j-1) \\
& \mathrm{X}(i-1, j-1) \\
& \mathrm{Y}(i-1, j-1)
\end{aligned}
$$

Any kind of alignment is allowed before the match/mismatch.

The X (and Y) matrices

k decides how long to make the gap.
We have to make the whole gap at once in order to know how to score it.

$$
\mathrm{X}(i, j)=\max \begin{cases}\mathrm{M}(i, j-k)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq j \\ \mathrm{Y}(i, j-k)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq j\end{cases}
$$

Running Time for Gap Penalties

$$
\begin{aligned}
& \mathrm{M}(i, j)=\operatorname{score}\left(x_{i}, y_{j}\right)+\max \left\{\begin{array}{l}
\mathrm{M}(i-1, j-1) \\
\mathrm{X}(i-1, j-1) \\
\mathrm{Y}(i-1, j-1)
\end{array}\right. \\
& \mathrm{X}(i, j)=\max \left\{\begin{array}{l}
\mathrm{M}(i, j-k)+\operatorname{gscore}(k) \\
\mathrm{Y} \text { for } 1 \leq k \leq j \\
\mathrm{Y}(i, j-k)+\operatorname{gscore}(k) \\
\text { for } 1 \leq k \leq j
\end{array}\right. \\
& \mathrm{Y}(i, j)=\max \begin{cases}\mathrm{M}(i-k, j)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq i \\
\mathrm{X}(i-k, j)+\operatorname{gscore}(k) & \text { for } 1 \leq k \leq i\end{cases}
\end{aligned}
$$

Final score is $\max \{M(n, m), X(n, m), Y(n, m)\}$.
How do you do the traceback?
Runtime:

- Assume $\left|\mathrm{XI}=|\mathrm{Y}|=n\right.$ for simplicity: $3 n^{2}$ subproblems
- $2 n^{2}$ subproblems take $O(n)$ time to solve (because we have to try all \mathbf{k})
$\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$ total time

Affine Gap Penalties

- $O\left(n^{3}\right)$ for general gap penalties is usually too slow...
- We can still encourage spaces to group together using a special case of general penalties called affine gap penalties:

$$
\begin{aligned}
& g_{\text {start }}=\text { the cost of starting a gap } \\
& \text { gextend }=\text { the cost of extending a gap by one more space } \\
& \text { gscore(k) }=g_{\text {start }}+(k-1) \times g_{\text {extend }}
\end{aligned}
$$

less restrictive \Rightarrow more restrictive

Benefit of Affine Gap Penalties

- Same idea of using 3 matrices, but now we don't need to search over all gap lengths, we just have to know whether we are starting a new gap or not.

Affine Gap as Finite State Machine

Affine Gap Penalties

Affine Base Cases (Global)

- $M(0, i)=$ "score of best alignment between 0 characters of x and i characters of y that ends in a match" $=-\infty$ because no such alignment can exist.
- $X(0, i)=$ "score of best alignment between 0 characters of x and i characters of y that ends in a gap in $x^{\prime \prime}=$ gap_start $+(i-I) \times$ gap_extend because this alignment looks like:

- $X(i, 0)=$ "score of best alignment between i characters of x and 0 characters of y that ends in a gap in $X "=-\infty$

- $M(i, 0)=M(0, i)$ and $Y(0, i)$ and $Y(i, 0)$ are computed using the same logic as $X(\mathrm{i}, 0)$ and $\mathrm{X}(0, \mathrm{i})$

Affine Gap Runtime

- $3 m n$ subproblems
- Each one takes constant time
- Total runtime $\mathrm{O}(m n)$:
- back to the run time of the basic running time.

Traceback

- Arrows now can point between matrices.
- The possible arrows are given, as usual, by the recurrence.
- E.g.What arrows are possible leaving a cell in the M matrix?

Why do you "need" 3 functions?

- Alternative WRONG algorithm:

```
M(i,j) = max(
    M(i-1, j-1) + cost( }\mp@subsup{\textrm{X}}{\textrm{i}}{\prime},\mp@subsup{Y}{j}{\prime})
    M(i-1, j) +(gstart if Arrow(i-1, j) != \longleftarrow, else gextend),
    M(j, i-1) + (gstart if Arrow(i, j-1) != \downarrow , else gextend)
)
```

WRONG Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends

PROBLEM:The best alignment for strings $x[1 . . i]$ and $y[I . . j]$ doesn't have to be used in the best alignment between
$x\left[1 . . i^{+} I\right]$ and $y[1 . . j+1]$

Why 3 Matrices: Example

match $=5$, mismatch $=-2$, gap $=-1$, gap_start $=-10$

$$
x=C A R T S, y=C A T
$$

CART
CA-T

CARTS
CA-T-
$\operatorname{OPT}(4,3)=$ optimal score $=15-10=5$
$\operatorname{WRONG}(5,3)=15-10-10=-5$

CARTS
CAT--

$$
\operatorname{OPT}(5,3)=10-2-10-1=-3
$$

this is why we need to keep the X and Y matrices around. they tell us the score of ending with a gap in one of the sequences.

Side Note: Lower Bounds

- Suppose the lengths of x and y are n.
- Clearly, need at least $\Omega(\mathrm{n})$ time to find their global alignment (have to read the strings!)
- The DP algorithms show global alignment can be done in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
- A trick called the "Four Russians Speedup" can make a similar dynamic programming algorithm run in $\mathrm{O}\left(\mathrm{n}^{2} / \log \mathrm{n}\right)$ time.
- We probably won't talk about the Four Russians Speedup.
- The important thing to remember is that only one of the four authors is Russian...
(Alrazarov, Dinic, Kronrod, Faradzev, 1970)
- Open questions: Can we do better? Can we prove that we can't do better? No\#

Space is often the limiting factor

$\mathrm{O}(\mathrm{nm})$ time is a problem, but as l've said, we strongly believe we can't to much better.

Can we do better in terms of space?

It turns out we can - at the same asymptotic time complexity!

Combining dynamic programming with the divide-andconquer algorithm design technique.

Hirshberg's algorithm

Warmup - optimal score in linear space
Consider our DP matrix:

Warmup - optimal score in linear space What scores to I need to know to fill in the answer here?

Warmup - optimal score in linear space What scores to I need to know to fill in the answer here?

Warmup - optimal score in linear space
If we fill rows left - right, and bottom to top, to fill in row i , we only need scores from row $\mathrm{i}-1$.
y

ms spo										
3.85 sap										
2.8spo										
1.5000										
0	1.5 sep	2.5800	$3{ }^{\text {seem }}$							$\mathrm{n}_{\text {S }}^{\text {sep }}$

Warmup - optimal score in linear space
Columns also work; if we go left - right, and bottom to top, to fill in column i, we only need scores from col i-1.
y

Warmup - optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in row i, we only need scores from row i-1.

Thus, we can compute the optimal score, keeping at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the strings, and so we can compute the optimal score, in linear space.

How can we compute the optimal alignment?
This method won't work for computing the optimal alignment; we need all rows to be able to follow the backtracking arrows.

How can we find the optimal alignment in linear space?

Hirschberg's algorithm provides a solution.

Re-using subproblems

Consider, again, the meaning of the DP matrix What is contained in the highlighted row?

Re-using subproblems

Consider, again, the meaning of the DP matrix score of every prefix of \mathbf{x} against all of \mathbf{y} in this row

Re-using subproblems

Consider, again, the meaning of the DP matrix What is contained in the highlighted column?

Re-using subproblems

Consider, again, the meaning of the DP matrix score of every prefix of \mathbf{y} against all of \mathbf{x} in this column

Re-using subproblems

 score of every prefix of \mathbf{y} against $\mathrm{ith}^{\text {th }}$ prefix of \mathbf{x} in the $\mathrm{i}^{\text {th }}$ column. How do we get these values efficiently?

Re-using subproblems

score of every prefix of \mathbf{y} against th prefix of \mathbf{x} in the $\mathrm{ith}^{\text {th }}$ column. Easy if we fill in by columns instead of rows.

$\mathrm{ms} \mathrm{sep}^{\text {gex }}$				+	+						
$3{ }^{\text {spep }}$											
2.5seo											
$11^{\text {S Sap }}$											
0	1.5 sem	2ssm	Spep	3.5 seo							$\mathrm{niSmog}^{\text {sem }}$

What about suffixes?

Consider filling in the DP matrix from the opposite direction (top right to bottom left)

								2. gap	1 Sgap	0
8 A										$1 .{ }^{\text {gap }}$
7 T										2.Sgap
6 C										
5 T										
4 T										
3 G										
2 A										
1 A										m:Sgap
${ }_{1}^{\text {A }}$	$\begin{array}{ll} A & G \\ 2 & 3 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & 6 \end{aligned}$	$\begin{aligned} & A \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 9 \end{aligned}$	$\begin{gathered} T \\ 10 \end{gathered}$	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	X

What about suffixes?

Optimal alignment between $x[8:]$ and $y[6:]$

What about suffixes?

This lets us compute optimal score between a suffix of \mathbf{x} with all suffixes of \mathbf{y}

								2.58 gap	1 Sgap	0
8 A										1.5 Sgap
7 T										2.Sgap
6 C										
5 T										
4 T										
3 G										
2 A										
1 A										m:Sgat
${ }_{1}^{\text {A }}$	$\begin{array}{ll} A & G \\ 2 & 3 \end{array}$	$\begin{aligned} & \mathrm{C} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & 5 \end{aligned}$	$\begin{aligned} & T \\ & 6 \end{aligned}$	A 7	$\begin{aligned} & \mathrm{G} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { C } \\ & 9 \end{aligned}$	$\begin{gathered} \mathrm{T} \\ 10 \end{gathered}$	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	X

What about suffixes?

Prefixes (forward):
$\operatorname{OPT}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\text { OPT }^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right.$
Suffixes (backward):
OPT $^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\text { OPT }^{\prime}[i+1, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i+1, j]\end{array}\right.$
This lets us build up optimal alignments for increasing length suffixes of \mathbf{x} and \mathbf{y}

What about suffixes?

Prefixes (forward):
OPT $[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\text { OPT }^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right\}$
Suffixes (backward):
OPT $^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\text { OPT }^{\prime}[i+1, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i, j+1] \\ \operatorname{gap}+\text { OPT }^{\prime}[i+1, j]\end{array}\right.$
This lets us build up optimal alignments for increasing length suffixes of \mathbf{x} and \mathbf{y}

What about suffixes?

Prefixes (forward):
OPT $[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i}, y_{j}\right)+\text { OPT }^{\prime}[i-1, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i, j-1] \\ \operatorname{gap}+\operatorname{OPT}[i-1, j]\end{array}\right.$
Suffixes (backward):
$\mathrm{OPT}^{\prime}[i, j]=\max \left\{\begin{array}{l}\operatorname{score}\left(x_{i+1}, y_{j+1}\right)+\mathrm{OPT}^{\prime}[i+1, j+1] \\ \operatorname{gap}+\mathrm{OPT}^{\prime}[i, j+1] \\ \operatorname{gap}+\mathrm{OPT}^{\prime}[i+1, j]\end{array}\right.$
note: the slight change in indexing here. It will make writing our solution easier.

Finding the optimal alignment

How does this help us compute the optimal alignment in linear space?

Algorithmic idea: Combine both dynamic programs using divide-and-conquer

Divide-and-conquer splits a problem into smaller subproblems and combines the results (much like DP).

Examples: MergeSort \& Karatsuba multiplication

Think about this in "graph" land

 What do we know about the structure of the optimal path in our "edit-DAG"?

Think about this in "graph" land

Can't get from here to there without passing through the middle.

Finding the optimal alignment

Consider the middle column - we know that the optimal aln. must use some cell in this column; which one?

Finding the optimal alignment

It uses the cell (i,j) such that OPT[i,j] + OPT'[i,j] has the highest score. Equivalently, the best path uses some vertex v in the middle col. and glues together the best paths from the source to v and from v to the sink.

Finding the optimal alignment

Claim: OPT[i,j] and OPT'[i,j] can be computed in linear space using the trick from above for finding an optimal score in linear space

Algorithmic Idea

Devise a D\&C algorithm that finds the optimal alignment path recursively, using the spaceefficient scoring algorithm for each subproblem.

D\&C Alignment

DCAlignment (x, y) :

$$
\begin{aligned}
& n=|x| \\
& m=|y| \\
& \text { if } m<=2 \text { or } n<=2 \text { : } \\
& \quad \text { use "normal" DP to compute OPT }(x, y) \\
& \text { compute space-efficient OPT }(x[1: n / 2], y) \\
& \text { compute space-efficient OPT' }(x[n / 2+1: n], y) \\
& \text { let } q \text { be the index maximizing OPT }[n / 2, q]+0 \\
& \text { add back pointer of (} n / 2, q) \text { to the optimal } \\
& \text { DCAlignment }(x[1: n / 2], y[1: q]) \\
& \text { DCAlignment }(x[n / 2+1: n], y[q+1: m]) \\
& \text { return } P
\end{aligned}
$$

$$
\text { let } q \text { be the index maximizing OPT }[n / 2, q]+\text { OPT' }[n / 2, q]
$$

$$
\text { add back pointer of }(n / 2, q) \text { to the optimal alignment } P
$$

D\&C Alignment

How can we show that this entire process still takes quadratic time?

Let $T(n, m)$ be the running time on strings \mathbf{x} and \mathbf{y} of length n and m , respectively. We have:

with base cases:
$T(n, 2) \leq c n$
$T(2, m) \leq c m$

D\&C Alignment

Base:
$T(n, 2) \leq c n$
$T(2, m) \leq c m$
Inductive:
$T(n, m) \leq c n m+T(n / 2, q)+T(n / 2, m-q)$
Problem: we don't know what q is. First, assume both \mathbf{x} and \mathbf{y} have length n and $\mathrm{q}=\mathrm{n} / 2$ (will remove this restriction later)
$\mathrm{T}(\mathrm{n}) \leq 2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}^{2}$
This recursion solves as $T(n)=O\left(n^{2}\right)$
Leads us to guess $T(n, m)$ grows like $O(n m)$

Smarter Induction

Base:
$T(n, 2) \leq c n$
$T(2, m) \leq c m$
Inductive:
$\mathrm{T}(\mathrm{n}, \mathrm{m}) \leq \mathrm{knm}$
Proof:

$$
\begin{aligned}
T(n, m) & \leq c n m+T(n / 2, q)+T(n / 2, m-q) \\
& \leq c n m+k q n / 2+k(m-q) n / 2 \\
& \leq c n m+k q / 2+k m n / 2-k q n / 2 \\
& =[c+(k / 2)] m n
\end{aligned}
$$

Thus, our proof holds if $\mathrm{k}=2 \mathrm{c}$, and $\mathrm{T}(\mathrm{n}, \mathrm{m})=\mathrm{O}(\mathrm{nm})$ QED

Conclusion

Trivially, we can compute the cost of an optimal alignment in linear space

By arranging subproblems intelligently we can define a "reverse" DP that works on suffixes instead of prefixes

Combining the "forward" and "reverse" DP using a divide and conquer technique, we can compute the optimal solution (not just the score) in linear space.

This still only takes $\mathrm{O}(\mathrm{nm})$ time; constant factor more work than the "forward"-only algorithm.

Recap

- General gap penalties require 3 matrices and $O\left(n^{3}\right)$ time.
- Affine gap penalties require 3 matrices, but only $\mathrm{O}\left(n^{2}\right)$ time.
- Sub-quadratic time general alignment is likely not possible.
- Linear space alignment can be obtained at no asymptotic cost to runtime.

