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General Gap Penalties

• Currently, the score of a run of k gaps is sgap × k 

• It might be more realistic to support general gap penalty, so 
that the score of a run of k gaps is |gscore(k)| < |(sgap × k)|. 

• Then, the optimization will prefer to group gaps together.

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

These have the same score, but the second one is often more 
plausible.

A single insertion of “GAAT” into the first string could change 
it into the second — Biologically, this is much more likely as x 
could be transformed into y in “one fell swoop”.

*



General Gap Penalties — The 
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

Previous DP no longer works with general gap penalties. 

Why?

*



General Gap Penalties — The 
Problem

AAAGAATTCA
A-A-A-T-CA

AAAGAATTCA
AAA----TCAvs.

The score of the last character depends on details of the 
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

We need to “know” how long a final run of gaps is in order 
to give a score to the last subproblem.

*



General Gap Penalties — The 
Problem

The score of the last character depends on details of the 
previous alignment:

AAAGAAC
AAA----

AAAGAATC
AAA-----vs.

*

Knowing the optimal alignment at the substring 
ending here.

Doesn’t let us simply build the optimal alignment 
ending here.



Three Matrices
We now keep 3 different matrices:  

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch. 

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X. 

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i

*



The M Matrix
We now keep 3 different matrices:  

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch. 

X(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X. 

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment 
ends in a match/mismatch.

A
G

Any kind of alignment is allowed 
before the match/mismatch.

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

*



G---
ACGT

The X (and Y) matrices

i
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G

j-k j

k
x

y
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i
-
G

j-k j
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x

y
----
GCGT

i
-
G

j-k j

k
x

y

This case is automatically 
handled.

k decides how long to make 
the gap.  

We have to make the whole 
gap at once in order to 
know how to score it. 

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

*



Running Time for Gap Penalties

Runtime: 

• Assume |X| = |Y| = n for simplicity: 3n2 subproblems 

• 2n2 subproblems take O(n) time to solve (because we have to try all k) 

⇒ O(n3) total time

Final score is max {M(n,m), X(n,m), Y(n,m)}.  

How do you do the traceback?

M(i, j) = score(xi, yj) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

(
M(i, j � k) + gscore(k) for 1  k  j

Y(i, j � k) + gscore(k) for 1  k  j

Y(i, j) = max

(
M(i� k, j) + gscore(k) for 1  k  i

X(i� k, j) + gscore(k) for 1  k  i
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Affine Gap Penalties
• O(n3) for general gap penalties is usually too slow...  

• We can still encourage spaces to group together using a special 
case of general penalties called affine gap penalties: 

gstart = the cost of starting a gap 

gextend = the cost of extending a gap by one more space 

gscore(k) = gstart + (k-1) x gextend 

-g
sc

or
e(

k)

Affine gap penalty

gstart

(k-1)*gextend

1

-g
sc

or
e(

k)

Convex gap penalty

-g
sc

or
e(

k)

length of gap

General gap penalty

less restrictive ⇒ more restrictive

length of gap length of gap



Benefit of Affine Gap Penalties

• Same idea of using 3 matrices, but now we don’t need to search 
over all gap lengths, we just have to know whether we are 
starting a new gap or not.

*



Affine Gap as Finite State Machine

M

Y X

match(i,j)

gege

match(i,j)

gs+ge
gs+ge

match(i,j)

gs+ge

gs+ge

*



Affine Gap Penalties

gap in x

gap in y

(mis)match 
between
x and y

If previous 
alignment ends in 
(mis)match, this 
is a new gap

M(i, j) = score(xi, yi) + max

8
>><

>>:

M(i� 1, j � 1)

X(i� 1, j � 1)

Y(i� 1, j � 1)

X(i, j) = max

8
>><

>>:

gstart +M(i, j � 1)

gextend +X(i, j � 1)

gstart +Y(i, j � 1)

Y(i, j) = max

8
>><

>>:

gstart +M(i� 1, j)

gstart +X(i� 1, j)

gextend +Y(i� 1, j)

If we’re using the 
X matrix, then 
we’re extending a 
gap.

If we’re using the 
Y matrix, then 
we’re starting a 
new gap in this 
string.

*



Affine Base Cases (Global)

• M(0, i) = “score of best alignment between 0 characters of x and i 
characters of y that ends in a match” = -∞ because no such alignment 
can exist.

• X(0, i) = “score of best alignment between 0 characters of x and i 
characters of y that ends in a gap in x” = gap_start + (i-1) × gap_extend 
because this alignment looks like: 

• X(i, 0) = “score of best alignment between i characters of x and 0 
characters of y that ends in a gap in X” = -∞

• M(i, 0) = M(0, i) and Y(0, i) and Y(i, 0) are computed using the same logic 
as X(i, 0) and X(0, i)

---------
yyyyyyyyy

xxxxxxxxx-
----------

← not allowed

*



Affine Gap Runtime

• 3mn subproblems

• Each one takes constant time

• Total runtime O(mn):

• back to the run time of the basic running time.

Traceback

• Arrows now can point between matrices.

• The possible arrows are given, as usual, by the recurrence.

• E.g. What arrows are possible leaving a cell in the M matrix?

*



Why do you “need” 3 functions?

• Alternative WRONG algorithm:

M(i,j) = max(

   M(i-1, j-1) + cost(xi, yj),

   M(i-1, j) +(gstart if Arrow(i-1, j) !=    , else gextend),

   M(j, i-1) + (gstart if Arrow(i, j-1) !=   , else gextend)

)

WRONG Intuition: we only need to know whether we are starting a gap or 
extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we 
can use them to decide if we are starting a new gap.

The best alignment 
up to this cell ends 
in a match.

The best alignment 
up to this cell ends 

in a gap.
PROBLEM: The best alignment for strings 
x[1..i] and y[1..j] doesn’t have to be used 
in the best alignment between  
x[1..i+1] and y[1..j+1]

*



Why 3 Matrices: Example

CART
CA-T

match = 5, mismatch = -2, gap = -1, gap_start = -10

OPT(4, 3) = optimal score = 15 - 10 = 5

CARTS
CA-T-

WRONG(5, 3) = 15 - 10 - 10

CARTS
CAT--

OPT(5, 3) = 10 - 2 - 10 - 1 

this is why we need to keep the X and Y matrices around.  
they tell us the score of ending with a gap in one of the sequences.

= -5

= -3

*

x=CARTS, y=CAT



Side Note: Lower Bounds
• Suppose the lengths of x and y are n.

• Clearly, need at least Ω(n) time to find their global alignment  
(have to read the strings!)

• The DP algorithms show global alignment can be done in O(n2) time.

• A trick called the “Four Russians Speedup” can make a similar dynamic 
programming algorithm run in O(n2 / log n) time. 

• We probably won’t talk about the Four Russians Speedup.

• The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzev, 1970)

• Open questions: Can we do better? Can we prove that we can’t do 
better? No#

*
#: Backurs, Arturs, and Piotr Indyk. "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)." Proceedings of the forty-

seventh annual ACM symposium on Theory of computing. ACM, 2015.



Space is often the limiting factor

O(nm) time is a problem, but as I’ve said, we strongly 
believe we can’t to much better. 

Can we do better in terms of space?

It turns out we can — at the same asymptotic time 
complexity!

Combining dynamic programming with the divide-and-
conquer algorithm design technique.

Hirshberg’s algorithm



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Consider our DP matrix:



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

What scores to I need to know to fill in the answer here?
These



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

If we fill rows left - right, and bottom to top, to fill in  
row i, we only need scores from row i-1.



Warmup — optimal score in linear space

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

x

y

Columns also work; if we go left - right, and bottom to 
top, to fill in column i, we only need scores from col i-1.



Warmup — optimal score in linear space

If we fill rows left - right, and bottom to top, to fill in  
row i, we only need scores from row i-1.

Thus, we can compute the optimal score, keeping  
at most 2 rows / columns in memory at once.

Each row / column is linear in the length of one of the 
strings, and so we can compute the optimal score, in 
linear space.



How can we compute the optimal alignment?

This method won’t work for computing the optimal 
alignment; we need all rows to be able to follow the 
backtracking arrows.

How can we find the optimal alignment in linear 
space?

Hirschberg’s algorithm provides a solution.



Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted row?

x

y



Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of x against all of y in this row

x

y



Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

What is contained in the highlighted column?

x

y



Re-using subproblems
Consider, again, the meaning of the DP matrix

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against all of x in this column

x

y



Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith 
column. How do we get these values efficiently?

x

y



Re-using subproblems

m·sgap

3·sgap

2·sgap

1·sgap

0 1·sgap 2·sgap 3·sgap n·sgap

score of every prefix of y against ith prefix of x in the ith 
column. Easy if we fill in by columns instead of rows.

x

y



What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Consider filling in the DP matrix from the opposite 
direction (top right to bottom left)

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8



What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

Optimal alignment between x[8:] and y[6:]

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8



What about suffixes?

n·sgap 2·sgap 1·sgap 0

1·sgap

2·sgap

m·sgap

x

y

This lets us compute optimal score between a suffix of 
x with all suffixes of y

A A G C T T A G C T A
A
A
G
T
T
C
T
A

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8



What about suffixes?

This lets us build up optimal alignments for increasing 
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):



What about suffixes?

This lets us build up optimal alignments for increasing 
length suffixes of x and y

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):



What about suffixes?

OPT’ [i, j] = max

8
><

>:

score (xi+1, yj+1) + OPT’ [i+ 1, j + 1]

gap + OPT’ [i, j + 1]

gap + OPT’ [i+ 1, j]

OPT [i, j] = max

8
><

>:

score (xi, yj) + OPT’ [i� 1, j � 1]

gap + OPT [i, j � 1]

gap + OPT [i� 1, j]

Prefixes (forward):

Suffixes (backward):

note: the slight change in indexing here. It will make 
writing our solution easier.



Finding the optimal alignment

How does this help us compute the optimal alignment 
in linear space?

Algorithmic idea: Combine both dynamic programs 
using divide-and-conquer 

Divide-and-conquer splits a problem into smaller sub-
problems and combines the results (much like DP).

Examples: MergeSort & Karatsuba multiplication



Think about this in “graph” land
What do we know about the structure of the optimal 
path in our “edit-DAG”?



Think about this in “graph” land
Can’t get from here to there without passing through  
the middle.



Finding the optimal alignment
Consider the middle column — we know that the 
optimal aln. must use some cell in this column; 
which one?



Finding the optimal alignment
It uses the cell (i,j) such that OPT[i,j] + OPT’[i,j] has the 
highest score. Equivalently, the best path uses some vertex v 
in the middle col. and glues together the best paths from the 
source to v and from v to the sink.



Finding the optimal alignment
Claim: OPT[i,j] and OPT’[i,j] can be computed in 
linear space using the trick from above for finding 
an optimal score in linear space



Algorithmic Idea
Devise a D&C algorithm that finds the optimal 
alignment path recursively, using the space-
efficient scoring algorithm for each subproblem.



D&C Alignment

DCAlignment(x, y):
    n = |x|
    m = |y|
    if m <= 2 or n <= 2:
        use “normal” DP to compute OPT(x, y)
    compute space-efficient OPT(x[1:n/2], y)
    compute space-efficient OPT’(x[n/2+1:n], y)
    let q be the index maximizing OPT[n/2,q] + OPT’[n/2,q]
    add back pointer of (n/2,q) to the optimal alignment P
    DCAlignment(x[1:n/2], y[1:q]) 
    DCAlignment(x[n/2+1:n], y[q+1:m])
    return P

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 288)



D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

How can we show that this entire process still takes 
quadratic time?

Let T(n,m) be the running time on strings x and y of 
length n and m, respectively.  We have:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

DCAlignment(x[1:n/2], y[1:q]) DCAlignment(x[n/2+1:n], y[q+1:m]) 

with base cases:

T(n,2) ≤ cn
T(2,m) ≤ cm



D&C Alignment

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q)

Base: 
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

Problem: we don’t know what q is. First, assume both 
x and y have length n and q=n/2  
(will remove this restriction later)

T(n) ≤ 2T(n/2) + cn2

This recursion solves as T(n) = O(n2) 
Leads us to guess T(n,m) grows like O(nm)



Smarter Induction

Adopted from “Algorithm Design” Kleinberg & Tardos (Ch. 6.7 pg 289 — 290)

T(n,m) ≤ knm

Base: 
T(n,2) ≤ cn
T(2,m) ≤ cm

Inductive:

T(n,m) ≤ cnm + T(n/2, q) + T(n/2, m-q) 
           ≤ cnm  + kqn/2 + k(m-q)n/2 
           ≤ cnm  + kqn/2 + kmn/2 - kqn/2 

      = [c+(k/2)] mn

Proof:

Thus, our proof holds if k=2c, and T(n,m) = O(nm) QED



Conclusion
Trivially, we can compute the cost of an optimal 
alignment in linear space

By arranging subproblems intelligently we can define a 
“reverse” DP that works on suffixes instead of prefixes

Combining the “forward” and “reverse” DP using a 
divide and conquer technique, we can compute the  
optimal solution (not just the score) in linear space.

This still only takes O(nm) time; constant factor more 
work than the “forward”-only algorithm.



Recap

• General gap penalties require 3 matrices and O(n3) time.

• Affine gap penalties require 3 matrices, but only O(n2) time. 

• Sub-quadratic time general alignment is likely not possible.

• Linear space alignment can be obtained at no asymptotic cost to 
runtime.

*


