
CSE 373

Lecture 11

Returning to the Shortest Path problem :

Shortest path with negative weights :

Given a directed graph G with weighted edges dlyv) that may be

positive ,
O

,
or negative ,

find the shortest path from s to t .

Complication .

'

Negative weight cycles
- If some cycle has a negative

cost
,

we can make the length of the s - t path as small us we

want !

sunny '

Ie
the weight

go from s to w
,

then traverse the cycle as much as we

want C never stop)
.

Assume no negative weight cycles .

- The negative edge weights breaks the greedy decision role that is used

by Dijkstra's algorithm; why ?

- the shortest s - t path no longer uses the shortest s - t '

sub path for

every t
'

between s and t

How do we fix this ?

Idea : Just make all weights non . negative Lie . add a big number to each edge
weight)

.

+101272,40€
2-724

2

¥ 7⇐ ' " t
5)

?""*- I

0+10=0
✓

-4 -726

this doesn't work because the cost becomes I. length C Pst cost LP)

ladjustment factor

• that is
, if paths are long in terms of # of hops , adjustment factor will dominate

Bellman - Ford

Let distslv) be the current estimated distance from s to v
.

At the start

distscv) =D V v 't S
.

Ford step : Find an edge (U
, vs such that

distal) t d Cu ,v) < dist
,

Cv) and set

dists I v) = dists C u) t I Lu , v)

disturb
> a

you , u , Theorem : After applying the Ford step until
S

Rrr >
v distslustdcu , v) > , dist

,
a)

distslv)

for all edges ,
lists Lu) will equal the shortest

path distance from s to u for all U
.

Proof : Show that for every v : 4) There is a path of length distscu) and

(2) No path is shorter → so dist CV) most be the shortest path length .

Lemma I : After
any

number i of applications of the Ford step ,
either dists Lv) = a or

there is an s - v path of length dists Lv)
.

Proof: Let v be a vertex such that distscv) so
. Proceed by induction on i

BC :i=o
, only distscsto so

,
and there is a path of length O from s to s

IH : assume true for all j
 ai

IS : Let lists Cv) be tee distance updated during the ith application . It is updated

using edge (a
, D with the rule distscv > = distscutdcu , u) . distscu) must be so

and must have been updated via the ford step at some iteration j si .

Therefore
, by It ,

there is a path Psu of length lists Lu)
.

Now
,

on

the ith application But cu , v) is a path of length distscutdcu ,v) = dist
,

w)

Lemma 2 : Let Psv be
any path from s to v .

When the Ford step can no longer be applied ,

length (Psv) > , distscv) far all paths Psv .

Proof : By induction on # of edges in Psv
.

Bc : IPSA I
,

it is a single edge Cs ,
v) and because the force step can 't be applied ,

DCS
,

v) > , distslv)
.

IH : Assume true for Psu of K or fewer edges (
strong induction)

IS : Let Psv be an S - V path of ktl edges . Psv = But Cavs for some U .

length (Psv) = length L Psu) toku , v) > distscu) talcum) 7 distscv)

otherwise
, tie ford step could be applied .

So
,

which edges are candidates for the Ford step ?

those where dists Last Icu , is s distscv)

This can only become true if distscu) has become smaller since last we checked .

-

 whenever we change distscu) add a to a queue
-

To try and apply the Tord step ,
take a node from te queue

and

try to apply the rule to all of its edges .

Implementation : Running time :

Shortest Path L G
,

s
,

t) :

dist EU] = a tf u ; dist Es] -

- O n = # nodes

queue
= CSI ; parent -

- E } m
.

 - # edges
while queue not empty :

V =

queue . front C) ; queue . pop
C)

-

After diss Cv) has been updated
for w e neighbors C v) : K times

,
it corresponds to a

if dist Ev] tdcv
,

w) s dist Ew] : simple path of K edges .

Hi
:÷÷¥÷÷÷÷:÷

. . in::c:*:*:* .

So
,

each dist Ew] can be updated
at most n - I times .

return dist
, parent updating all vertices takes 0cm)

time
,

since we look at each edge
Question : twice .

How is Bellman - Ford Total
running

time = Ocmn)
dynamic programming ?

Note : slower than Dijkstra 's in general -

How is BF dynamic programming ?

Def : distscyi) is the length of the minimum cost path from s to v
using utmost i edges .

Define distscv.is recursively as

dis , ,
, ; ,= {

distslv
,

i - I) if te best S - v path uses at most it edges

distgcw ,
i - 1) tellin ,v) if the best s - u path uses i

edges and cwiv) is the last edge.

Len Nlw) be the neighbors of w .

we can also write our recurrence as

distscv.is = min { dm!
" '

semi - Dtdcww)
we Nlr)

Base case : distscv ,
D= dcs

, v) or a if C s ,v) ¢ E

Goal : Compute distslt ,
n - D

Important facts about the recurrence :

- dist
,

(Vix) depends only on distscw , y) for
y

wich is smaller than X

- There are only IVI x (IVI - I) possible arguments for distsco ,
.)

8 O pends on cells of neighbors
-

cell de
7 O in the previous row

of hops
6 o I]

(max length 5 O ft A
can fill in this matrix from

of path
)

4 O the bottom up .

3 O

2 O

I 00 3 - Go -20

s b C d Xt Wv

vertex chest

Bellman Ford (G -

-
CV

,
E)

,
s

,
t) :

disks Ex
,

D= dis
, x) for all x EV

for i -

- I
, .

. .

 ,
IVI - I

for ve V :

best
,

w .

- None

for w in N (v) :

best
-

w = min (best
-

w
,

dist
-

s Ew
,

i - Dtd Cw
,

v))| /
List

.
s Ev

,
is = min C best

.
w

,
dist

- s Ev
,

i - D)

return dist
-

s It
, n - I]

Running time of the DP :

Seimpleolg BetterAnealysis
- Oln ') sub problems

- let nv be # edges entering v

- OLD time I subproblem - filling each entry takes Olnv) time
- OCn3) time - Total time is :

Oln . Eun)=OLnm)

