
CSE 373

Lecture 11



Returning to the Shortest Path problem :

Shortest path with negative weights :

Given a directed graph G with weighted edges dlyv ) that may be

positive ,
O

,
or negative ,

find the shortest path from s to t .

Complication .

'

Negative weight  cycles
- If some cycle has a negative

cost
,

we can make the length of the s - t path as small us we

want !

sunny  '

Ie
the weight

go from s to w
,

then traverse the cycle as much as we

want C never stop )
.

Assume no negative weight cycles .

- The negative edge weights breaks the greedy decision role that  is  used

by Dijkstra's algorithm; why ?

- the shortest  s - t path no longer uses the shortest s - t '

sub path for

every t
'

between s and t



How do  we fix this ?

Idea : Just  make all weights non . negative Lie .  add a big number to each edge
weight )

.
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this doesn't work because the cost becomes I. length C Pst  cost LP )

ladjustment factor

• that  is
, if paths  are long in terms of # of hops , adjustment factor  will dominate

Bellman - Ford

Let distslv ) be the current estimated distance from s to v
.

At the start

distscv ) =D V v 't S
.

Ford step : Find an edge ( U
, vs such that

distal ) t  d Cu ,v ) < dist
,

Cv ) and set

dists I v ) = dists C u ) t I Lu , v )



disturb
> a

you , u , Theorem : After  applying the Ford step until
S

Rrr >
v distslustdcu , v ) > , dist

,
a )

distslv )

for all edges ,
lists Lu ) will equal the shortest

path distance from s to u for all U
.

Proof : Show that for every v : 4) There is a path of length distscu ) and

(2) No path is shorter  → so dist CV ) most be the shortest path length .

Lemma I : After
any

number i of applications of the Ford step ,
either dists Lv ) = a  or

there is an s - v path of length dists Lv )
.

Proof: Let v be a vertex  such that distscv ) so
. Proceed by induction  on i

BC :i=o
, only distscsto so

,
and there is a path of length O from s to s

IH :  assume true for all j
 ai

IS : Let lists Cv ) be tee distance  updated during the ith application . It  is updated

using edge ( a
, D with the rule distscv > = distscutdcu , u ) .  distscu ) must be so

and must have been updated via the ford step at some iteration j si .

Therefore
, by It ,

there  is a path Psu of length lists Lu )
.

Now
,

on

the ith application But cu , v ) is a path of length distscutdcu ,v ) = dist
,

w )



Lemma 2 : Let Psv be
any path from s to v .

When the Ford step can no longer be applied ,

length ( Psv ) > , distscv ) far all paths Psv .

Proof : By induction on #  of  edges  in Psv
.

Bc : IPSA I
,

it  is  a  single edge Cs ,
v ) and because the force step can 't be applied ,

DCS
,

v ) > , distslv )
.

IH : Assume true for Psu  of K or fewer  edges (
strong induction )

IS : Let Psv be an S - V path of ktl edges . Psv = But Cavs for some U .

length ( Psv ) = length L Psu) toku , v ) > distscu ) talcum ) 7 distscv )

otherwise
, tie ford step could be applied .

So
,

which edges are candidates for the Ford step ?

those where dists Last Icu , is s distscv )

This can only become true if distscu ) has become smaller since last  we checked .

-

 whenever we change distscu ) add a to  a queue
-  

To try and apply the Tord step ,
take a node from te queue

and

try to apply the rule to all of its  edges .



Implementation : Running time :

Shortest Path L G
,

s
,

t ) :

dist  EU ] =  a tf u ; dist  Es ] -

- O n = # nodes

queue
= CSI ; parent -

- E } m
.

 - # edges
while queue not  empty :

V =

queue . front C ) ; queue . pop
C )

-

After diss Cv ) has been  updated
for w e neighbors C v ) : K times

,
it  corresponds to  a

if dist  Ev ] tdcv
,

w ) s dist  Ew ] : simple path of K edges .

Hi
:÷÷¥÷÷÷÷:÷

. . in::c:*:*:* .

So
,

each dist  Ew ] can be updated
at  most n - I times .

return dist
, parent updating all vertices takes 0cm )

time
,

since we look at each edge
Question : twice .

How is Bellman - Ford Total
running

time = Ocmn )
dynamic programming ?

Note : slower than Dijkstra 's in general -



How  is BF dynamic programming ?

Def : distscyi ) is the length of the  minimum  cost path from  s to  v  
using utmost i edges .

Define distscv.is recursively as

dis , ,
,  ; ,= {

distslv
,

i - I ) if te best S - v path uses  at most  it edges

distgcw ,
i - 1) tellin ,v ) if the best  s - u path uses i

edges  and cwiv ) is the last  edge.

Len Nlw ) be the neighbors of w .

we  can also  write  our recurrence  as

distscv.is = min { dm!
" '

semi - Dtdcww )
we Nlr )

Base  case : distscv ,
D=  dcs

, v ) or a if C s ,v ) ¢ E

Goal : Compute distslt ,
n - D



Important facts about the recurrence :

- dist
,

( Vix ) depends only on distscw , y) for
y

wich is  smaller than X

-  There are  only IVI x ( IVI - I ) possible arguments for distsco ,
. )

8 O pends on cells of neighbors
-

cell de
7 O in the previous row

# of hops
6 o I]

( max length 5 O ft A
can fill in this matrix from

of path
)

4 O the bottom up .

3 O

2 O

I 00 3 - Go -20

s b C d Xt Wv

vertex chest



Bellman Ford ( G -

-
CV

,
E )

,
s

,
t ) :

disks Ex
,

D= dis
, x ) for all x EV

for i -

- I
,  .

. .

 ,
IVI - I

for ve V :

best
,

w .

- None

for w in N ( v ) :

best
-

w = min ( best
-

w
,

dist
-

s Ew
,

i - Dtd Cw
,

v ) )| /
List

.
s Ev

,
is = min C best

.
w

,
dist

- s Ev
,

i - D )

return dist
-

s It
, n - I ]

Running time of the DP :

Seimpleolg BetterAnealysis
- Oln ' ) sub problems

- let nv be # edges entering v

- OLD time I subproblem - filling each entry takes Olnv ) time
- OCn3 ) time - Total time  is :

Oln . Eun )=OLnm )


