CSE 373 Lectore 11

Returning to the Shortest Path problem:
Shortest path with negative weights:
Given a directed graph G with weighted edges $d(u, v)$ that may be positive, 0 , or negative, find the shortest path from s to t.

Complication: Negative weight cycles - If some cycle has a negative cost, we can make the length of the $s-t$ path as small us we want!

go from s to w, then traverse the cycle as much as we want (never stop). Assume no negative weight cycles.

- The negative edge weights break the greedy decision rule that is used by Dijkstra's algaithm; why?
- the shortest s-t path no longer uses the shortest s-t'subpath for every t^{\prime} between s and t

How do we fix this?
Idea: Just make all weights non-negative (ie. add a big number to each edge weight).

this doesn't work because the cost becomes $\alpha \cdot \operatorname{length}(P)+\operatorname{cost}(P)$
\uparrow adjustment factor

- that is, if paths are long in terms of \# of hops, adjustment factor will dominate

Bellman - Ford
Let $\operatorname{dist}_{s}(v)$ be the current estimated distance from s to v. At the start $\operatorname{dist}_{s}(v)=\infty \quad \forall v \neq s$.

Ford step: Find an edge (u, v) such that

$$
\begin{aligned}
& \operatorname{dist}_{s}(u)+d(u, v)<\operatorname{dist}_{s}(v) \text { and set } \\
& \operatorname{dists}_{s}(v)=\operatorname{dist}_{s}(u)+d(u, v)
\end{aligned}
$$

Theorem: After applying the Ford step until

$$
\operatorname{dist}_{s}(u)+d(u, v) \geqslant \operatorname{dist}_{s}(v)
$$

for all edges, dist (V) will equal the shortest path distance from s to u for all u.

Proof: Show that for every v : (U) There is a path of length dist (V) and
(2) No path is shorter \rightarrow so dist (V) must be the shortest path length.

Lemma 1: After any number i of applications of the Ford step, either $\operatorname{dist}_{s}(v)=\infty$ or there is an $s-v$ path of length dist (v).

Prof: Let v be a vertex such that $\operatorname{dist}_{s}(v)<\infty$. Proceed ky induction on i
$B C: i=0$, only $\operatorname{dist}_{s}(s)=0<\infty$, and there is a path of length O from s to s
IH: assume true for all $j<i$
IS: Let dist (v) be the distance updated during the i th application. It is updated using edge (u, v) with the rule $\operatorname{dist}_{s}(v)=\operatorname{dist}_{s}(u)+d(u, v)$. dist (u) must be $<\infty$ and must have been updated via the ford step at some iteration $j<i$.
Therefore, by IH, there is a path Pau of length dist (u). Now, on the $i^{\text {th }}$ application $P_{s u}+(u, v)$ is a path of length $\operatorname{dist}_{s}(u)+d(u, v)=\operatorname{dist}_{s}(v)$

Lemma 2: Let $P_{s v}$ be any path from s to V. When the Ford step can no longer be applied, length $\left(P_{S V}\right) \geqslant \operatorname{dist}_{s}(v)$ for all paths $P_{s v}$.
Proof: By induction on \# of edges in Psi.
$B C:\left|P_{s v}\right|=1$, it is a single edge (s, v) and because the ford step can't ke applied, $d(s, v) \geqslant \operatorname{dist}_{s}(v)$.

IH: Assume tive for Pau of k or fewer edges (strong induction)
IS: Let $P_{s v}$ be an $s-v$ path of $k+1$ edges. $P_{s v}=P_{s u}+(u, v)$ for some u.

$$
\operatorname{length}\left(P_{s v}\right)=\text { length }\left(P_{s u}\right)+d(u, v) \geqslant \operatorname{dist}_{s}(u)+d(u, v) \geqslant \operatorname{dist}_{s}(v)
$$

otherwise, the ford step could be applied.
So, which edges are candidates for the ford step?
those where $\operatorname{dist}_{s}(u)+d(u, v)<\operatorname{dist}_{s}(v)$
This can only become true if $\operatorname{dist}_{s}(u)$ has become smaller since last we checkeck.

- whenever we change dist (u) add u to a queue
- To try and apply the Ford step, take a node from the queue and try to apply the rule to all of its edges.

Implementation:
Shortest Path (G, s, t) :
$\operatorname{dist}[u]=\infty \quad \forall u ; \operatorname{dist}[s]=0$
queue $=[s]$; parent $=\{ \}$
while queue not empty:
$v=$ queue. front () ; queve.pop ()
for $w \in$ neighbors (v) :
if $\operatorname{dist}[v]+d(v, \omega)<\operatorname{dist}[\omega]$:
$\operatorname{dist}[\omega]=\operatorname{dist}[v]+d(v, \omega)$
parent $[w]=V$
if $\omega \notin$ queue: queue. append (ω)
return dist, parent
Question:
How is Bellman - Ford dynamic programming?

Running time:

$$
\begin{aligned}
& n=\# \text { nodes } \\
& m=\# \text { edges }
\end{aligned}
$$

- After distr (v) has been updated k times, it corresponds to a simple path of k edges.
- A path can be of length at most $n-1$ and still be simple
So, each $\operatorname{dist}[\omega]$ can be updated at most $n-1$ times.
Updating all vertices takes $O(m)$ time, since we book at each eclge twice.

Total running time $=O(m n)$
Note: Slower than Dijkstra's in general.

How is BF dynamics programming?
Def: $\operatorname{dist}_{s}(v, i)$ is the length of the minimum cost path from s to v using at most i edges.
Define $\operatorname{dist}_{s}(v, i)$ recursively as

$$
\operatorname{dist}_{s}(v, i)= \begin{cases}\operatorname{dist}_{s}(v, i-1) & \text { if the best } s-v \text { path uses at most } i-1 \text { edges } \\ \operatorname{dist}_{s}(w, i-1)+d(w, v) & \text { if the best } s-v \text { path uses } i \\ \text { edges and }(w, v) \text { is the last edge. }\end{cases}
$$

den $N(w)$ be the neighbors of w. we can also write our recurrence as

$$
\operatorname{dist}_{s}(v, i)=\min \left\{\begin{array}{l}
\operatorname{dists}_{s}(v, i-1) \\
\min _{w \in N(v)} \operatorname{dist}_{s}(w, i-1)+d(w, v)
\end{array}\right.
$$

Base case: $\operatorname{dist}_{s}(v, 1)=d(s, v)$ or ∞ if $(s, v) \notin E$
Goal: Compute $\operatorname{dist}_{s}(t, n-1)$

Important facts about the recurrence:

- dist (v, x) depends only on dist (w, y) for y wish is smaller than x
- There are only $|V| \times(|V|-1)$ possible arguments for $\operatorname{dist}_{5}(\cdot, \cdot)$

cell depends on cells of neighbors in the previous row
can fill in this matrix from the bottom up.
vertex dust

Bellman Ford $(G=(V, E), s, t)$:
dist_s $[x, 1]=d(s, x)$ for all $x \in V$
for $i=1, \ldots,|v|-1$
for $v \in V$:
best_w $=$ None
for w in $N(v)$:

$$
\begin{aligned}
& 1 \text { best_w }=\min (\text { best_w, dist_s }[w, i-1]+d(w, v)) \\
& \text { dist_s }[v, i]=\min (\text { best_ } w, \text { dist_s }[v, i-1])
\end{aligned}
$$

return dist_s $[t, n-1]$
Running fine of the DP:

Simple Analysis

- $O\left(n^{2}\right)$ subproblem
- $O(n)$ time/subproblem
$-O\left(n^{3}\right)$ time

Better Analysis

- let n_{v} be \# edges entering v
- filling each entry takes $O\left(n_{v}\right)$ time
- Total time is:

$$
O\left(n \cdot \sum_{v \in V} n_{v}\right)=O(n m)
$$

