
CSE 373

Network Flow

Network Flow

-

Slightly different algo design technique
- Will see an algorithm for Max Flow L and variants) that is able to Solve a

wide range of problems simply by posing
them as network flow .

Flow Network
Def : Connected , directed graph G = LV , E)

-

every edge e has an integral , non . negative capacity Ce
- there is a designatedsource node se V

-

there is a designated sink node t EV
- no edge enters the source or leaves the sink .

E.
g .

u X

20 7 7 20

s 30 10 30 ¥7
N v

to > ✓ > w 10

10

Def : Flow

An s - t flow is a function f : E -7112
"°

that assigns a- non . negative
real number to each edge , subject to the flow constraints .

1) OE f (e) Ice for each edge
2) For every node except s and t

,
we have :

I '

fee) =

§fee
'

)
e into v e leaving v

these " balance constraints "

say that whatever
incoming flow we have

at a node must also leave that node
.

Some notation :

The value of a flow f is : v (f) = I ' fee)
e leavings

- the amount the flow is able to " Send "

f
in

(v)=e to rfcv)
,

f
" t

L v) -

- E ' fee)
e leaving v

→ balance constraints become fincv) : f
" +

Lv) Fv ed- { Sit })

The Maximum Flow problem :

Given a flow network G
Find a flow f on G of maximum possible valve

.

How to design an algorithm for such a problem ? Thoughts ?
What would a greedy approach do ?

- Start with fees = o te
- Pick some s - t path and " push " flow along it up to capacity . Repeat

- When we get
 ' ' stuck "

,
we can erase flow along some edges

Eg . 2.0.

-

7.
a lo

zu
-

-

-
-

Yo
-

-

20 '
so)

to !s
d

go.pt s
n y

t

to)
V 20 JV

After first path ,
have now

,
we've freed up capacity on the

v (f) = 20
. . .

 would like to Ht) edge
send some flow ' ' back

' '

pu
. lo

20 .

loD . total
s 20Dt v (f) = 30

to
DV

-

Let's make this idea of "

erasing
"

more formal

Residual graph : Guff depends on the flow f

1) Gf contains the same nodes as G
2) Consists of two different types of edges :

- Forward Edges : For each e= C um) of G for which flesh Ce , include edge
e

'
= C U

,
v) in Gf with capacity Ce - f Ce) .

- Backward Edges : For each e
-

- cu , v) in G with fees > o ,

we include an edge e' = C v
, u) in Gf with capacity

f Ce)

So
,

forward edges replace " original " edges ,
but modify their capacities to be the

remaining
I unused I residual capacities .

Backward edges can
" erase " flow C up to feel) along edge e .

20120
?

Y
10

"
U -

to

20130 J .

p g

-

"

"€120
S

w y
t N '

to > V 20/20 Residual graph
" ° > V ^ *

Gf 117L backward edge) → forward edge)

Def : Augmenting paths

- Let P be an s - t path in Gf
ILet b = bottleneck (P

,
f) be the smallest capacity in Gf on

any edge of P
If b > O

,
then we can increase the total flow by sending b along path P .

Consider the following procedure

augment Cfp) :

b = bottleneck (P
,

f)
for each cu , v) EP :

if e= Cu
,

v) is a forward edge :

increase fee) in G by b

/ else

ifeng.ee . , in G bob

return f t return the newflow

Applying augmentation repeatedly leads to the Ford-Folkers→ algorithm

Max Flow FFCG) :

Set He] = O f e E G
While D= Find Path C s

,
t

,
Residual C G

,
f)) :

F- augment Cf
, p)

| update Residual (G
,

f)

return f
Some relevant questions about this algorithm :

4) Does the
"

augment
" Step preserve the validity of the flow ?

G) How long will it run ? Does it terminate ?
(3) How can we be sure the resulting flow is a maximum ?

4) Does the
"

augment
" Step preserve the validity of the flow ?

theorem : After f '
= augment CP

,
f)

,
f

'

is still a valid flow

Lemmy : Augmentation preserves the capacity constraints

-
 If e is a forward edge ,

it has capacity Ce
- fce) . Therefore :

F' Ce) = flat bottleneck CP
,

f) I f Ce) t @e
- fee)) E Ce

- If e is a backward edge ,
it has capacity f- Le) . Therefore :

f
'

le) = He) - bottleneck (P
,

f) 7 fce) - f Ce) = O

Lemmaio Augmentation preserves the balance constraints :

Consider some node vj there are 4 possibilities if v is on P :

tb tb a 9 a

{) - b j
t bJb 7 I 9 9 -

BI
- b

- b

Each such situation preserves the balance constraints .

terminal

(1) Since the original flow consisted of
only integers ,

so does every augmenting
flow C we didn't prove this ; why is it true ?)

.

⑦ At
every augmentation,

we increase the values of the flow by
bottleneck LP

,
f)

, which is always 7 ,
I

.

(3) We can never send more than C = I
'

Ce total flow

(this is not a tight bound) e leaving s

Hence : The Ford - Fulkerson algorithm terminates in at most C iterations
of the while loop .

Further : it If G has m edges , Gf has I 2M edges
(2) We can find an S - t path in Gf in OC Mtn)=O(m) time (Bfs I Dfs)
(3) Since my 42 C

every
node is adjacent to some edge)

We have I The Ford - Fulkerson algorithm runs in 0 (m C)
time

.

Note : This makes the FF algorithm fseyal time
.

Note : This makes the FF algorithm
-

pseudo polynomial time
- -

8

Other Max Flow algorithms can rectify this

e. g .
On m2) → Edmonds - Karp

O (m
'

log C) →
Scaling max flow (this is polynomial)

Ocn 'm) or 043) → pre flow push

Now
,

the difficult question is :

How do we know that the flow we get back is maximum ?

Cuts and Cut Capacity
Def : The capacity of an s - t cut CA

,
B) is the sum of the

capacities of the edges leaving A

A

to
Bev - A Eg .

The capacity of this cut is

" Pa " " " B) = ⇒→
t

c-
9

theorem : Let f be an S - t flow and CA
,
B) be an s . t cut .

Then v (f) = fat (A) - f
in

CA) .

That is
,

the valve of the flow is the same as the valve it takes across

any cut from S 'S component to t 's component . Think about how to prove
this (see 7.2) .

theorem: Let f be an s 't flow and LA
,

B) be ange s - t cut .

Then v (f) E capacity (A
, B) .

Proof :
v (f) = f

" +

(A) - fin (A)
± foot LA)
= E '

f Le)
e leaving A

= I Ce
e

leaving A

=

capacity (A ,B)

Theorem *
says that any

cut is at least as big as any
flow

.

Therefore , cuts constrain) bound flows .
The minimvmcapacity cut bounds

the maximums . Intact ,
the minimum cut value always equals the

maximum flow valve

of a .iq#aut=maximomvaeneotafio .

-

myFEE

Let f *
be a flow returned by our algorithm .

Look at Gf* ,
but define a cut in G :

> - . - . - . -
. >

,

-
-

'

)
?

,
-

-

-

7
s 3 . ->It-

-
-

> -

-
-

.

- or
⇐

-

-
-

.

-

) -

-

-

-

A E- nodes reachable from s in residual graph Gf*

Cut = (At
,

B 't)

Along this cut
,

forward edges must be saturated ,
backward edges

must have 0 flow
.

This implies ve 't) =

capacity (A *
,

B 't)

- (Att , Bt) is an s - t cut because there is no path from s - t in

the residual graph Gf*
- Edges Cu

,
u) from A * to B 't

must be saturated - otherwise Here would

be a forward edge Lu ,
v) in Gf* and u would be part of At

.

- Edges C ya) from B *
to A * must be empty

- otherwise
, tree would

be a backward edge C u
,

v) in Gf* and v would be part of

A *

Therefore :

- vcf 't)= capacity (At
,

Bt)
- No flow can have a value larger than capacity C At

,
B 't)

- So
,

f- *
must be a maximum flow

- And
, CA*

,
B 't) must be a minimum capacity cut

Yielding Theorem (Max Flow = Min Cut) :

• The value of the maximum flow in

any
flow graph

is equal to tie capacity of the minimum cut .

Finally ,
note this proof is constructive ,

it can be used to find the

minimum capacity cut .

d) find the max flow f 't

⑦ Construct the residual graph Gf*
(3) Do a BFS to find the nodes reachable in Gf* from s ; let

these define A *

(4) Let B * be all other nodes

(5) Return (At
,

Blt) as a minimum capacity cut .

