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Network Flow



Network Flow

-

Slightly different algo design technique
- Will see an algorithm for Max Flow L and variants ) that  is  able to Solve a

wide range of problems simply by posing
them as network flow .

Flow Network
Def : Connected , directed graph G = LV , E )

-

every edge e has an integral , non . negative capacity Ce
- there is a designatedsource node se V

-

there is a designated sink node t EV
- no edge enters the source or leaves the sink .
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Def : Flow

An s - t flow  is a function f : E -7112
"°

that  assigns a- non . negative
real number to  each edge , subject to the flow  constraints .

1) OE f (e) Ice for each edge
2) For every node except s and t

,
we have :

I '

fee ) =

§fee
'

)
e into v e leaving v

these " balance constraints "

say that whatever
incoming flow we have

at a node must also leave that node
.

Some notation :

The  value of a flow f is : v (f) = I ' fee )
e leavings

- the amount the flow  is  able to " Send "

f
in

(v )=e to rfcv )
,

f
" t

L v ) -

- E ' fee )
e leaving v

→ balance constraints become fincv ) : f
" +

Lv ) Fv ed- { Sit } )



The Maximum Flow problem :

Given a flow  network G
Find a flow f  on G of maximum possible valve

.

How to design an algorithm for such a problem ? Thoughts ?
What would a greedy approach do ?

- Start with fees = o te
- Pick some s - t path and " push " flow along it  up to  capacity . Repeat

- When we get
 '  ' stuck "

,
we can erase flow along some edges

Eg . 2.0.
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After first path ,
have now

,
we've freed up capacity on the

v (f) = 20
. . .

 would like to Ht) edge
send some flow '  ' back
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Let's make this idea of  "

erasing
"

more formal

Residual graph : Guff depends on the flow f

1) Gf contains the same nodes as G
2) Consists of two different types  of  edges :

- Forward Edges : For each e= C um ) of G for  which flesh Ce , include edge
e

'  
= C U

,
v ) in Gf  with capacity Ce - f Ce ) .

- Backward Edges : For each e
-

- cu , v ) in G with fees > o ,

we  include an  edge e' = C v
, u ) in Gf with capacity

f Ce)

So
,

forward edges replace " original " edges ,
but  modify their capacities to be the

remaining
I unused I residual capacities .

Backward edges can
" erase " flow C up to feel ) along edge e .
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Def : Augmenting paths

- Let P be an s - t path in Gf
ILet b = bottleneck ( P

,
f) be the smallest  capacity in Gf on  

any edge of P
If b > O

,
then we can increase the total flow by sending b along path P .

Consider the following procedure

augment Cfp ) :

b = bottleneck ( P
,

f )
for each cu , v ) EP :

if e= Cu
,

v ) is a forward edge :

increase fee ) in G by b

/ else

ifeng.ee . , in G bob

return f t return the newflow



Applying augmentation repeatedly leads to the Ford-Folkers→ algorithm

Max Flow FFCG ) :

Set He ] = O f e E G
While D= Find Path C s

,
t

,
Residual C G

,
f ) ) :

F- augment Cf
, p )

| update Residual ( G
,

f )

return f
Some relevant questions about this algorithm :

4) Does the
"

augment
" Step preserve the validity of the flow ?

G) How long will it run ? Does it terminate ?
(3) How can we be sure the resulting flow  is a maximum ?



4) Does the
"

augment
" Step preserve the validity of the flow ?

theorem : After f '
= augment CP

,
f )

,
f

'

is still a valid flow

Lemmy : Augmentation preserves the capacity constraints

-
 If  e is  a forward edge ,

it has capacity Ce
- fce ) . Therefore :

F' Ce ) = flat bottleneck CP
,

f) I f Ce ) t @e
- fee ) ) E Ce

- If e  is  a backward edge ,
it has capacity f- Le ) . Therefore :

f
'

le ) = He ) - bottleneck ( P
,

f) 7 fce ) - f Ce ) = O

Lemmaio Augmentation preserves the balance constraints :

Consider some node vj there are 4 possibilities if v is on P :

tb tb a 9 a

{ ) - b j
t bJb 7 I 9 9 -

BI
- b

- b

Each such situation preserves the balance constraints .



terminal

(1) Since the original flow consisted of
only integers ,

so does every augmenting
flow C we didn't prove this ; why is  it true ? )

.

⑦ At
every augmentation,

we increase the values of the flow by
bottleneck LP

,
f)

, which is always 7 ,
I

.

(3) We can never send more than C = I
'

Ce total flow

( this is  not  a tight bound ) e leaving s

Hence : The Ford - Fulkerson algorithm terminates in at  most C iterations
of the while loop .

Further :  it If G has  m  edges , Gf has I 2M edges
(2) We can find an S - t path in Gf in OC Mtn )=O( m ) time ( Bfs I Dfs )
(3) Since my 42 C

every
node is adjacent to some edge )

We have I The Ford - Fulkerson algorithm runs in 0 ( m C )
time

.

Note : This makes the FF algorithm fseyal time
.



Note : This makes the FF algorithm
-

pseudo polynomial time
- -

8

Other Max Flow algorithms can rectify this

e. g .
On m2 ) → Edmonds - Karp

O ( m
'

log C) →
Scaling max flow ( this is polynomial )

Ocn 'm ) or 043 ) → pre flow push

Now
,

the difficult question is :

How do we know that the flow we get back is maximum ?



Cuts and Cut Capacity
Def : The capacity of an s - t cut CA

,
B ) is the sum  of the

capacities of the edges leaving A

A

to
Bev - A Eg .

The capacity of this cut  is

" Pa " " " B) = ⇒→
t

c-
9

theorem : Let f be an S - t flow and CA
,
B) be an s . t cut .

Then v (f) = fat ( A ) - f
in

CA ) .

That  is
,

the  valve of the flow  is the same as the valve it takes across

any cut from S 'S component to t 's component . Think about how to prove
this ( see 7.2 ) .



theorem: Let f be an s 't flow and LA
,

B) be ange s - t  cut .

Then v (f) E capacity ( A
, B) .

Proof :
v (f) = f

" +

( A ) - fin ( A)
± foot LA )
= E '

f Le )
e leaving A

= I Ce
e

leaving A

=

capacity ( A ,B)

Theorem *
says that any

cut is at least as big as any
flow

.

Therefore , cuts constrain ) bound flows .
The minimvmcapacity cut bounds

the maximums . Intact ,
the minimum cut value always equals the

maximum flow valve

of a .iq#aut=maximomvaeneotafio .

-
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Let f *
be a flow returned by our algorithm .

Look at Gf* ,
but define a cut  in G :
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A E- nodes reachable from s in residual graph Gf*

Cut  = ( At
,

B 't )

Along this cut
,

forward edges must be saturated ,
backward edges

must have 0 flow
.

This implies ve 't ) =

capacity ( A *
,

B 't )



- ( Att , Bt ) is an s - t cut because there is no path from s - t  in

the residual graph Gf*
- Edges Cu

,
u ) from A * to B 't

must be saturated - otherwise Here would

be a forward edge Lu ,
v ) in Gf* and u would be part  of At

.

- Edges C ya ) from B *
to A * must be empty

- otherwise
, tree would

be a backward edge C u
,

v ) in Gf* and v would be part  of

A *

Therefore :

-  vcf 't )= capacity ( At
,

Bt )
- No flow can have a value larger than capacity C At

,
B 't )

- So
,

f- *
must be a  maximum flow

- And
, CA*

,
B 't ) must be a  minimum capacity cut

Yielding Theorem ( Max Flow = Min Cut ) :

• The value of the maximum flow  in

any
flow graph

is equal to tie capacity of the minimum cut .



Finally ,
note this proof is constructive ,

it can be used to find the

minimum capacity cut .

d) find the max flow f 't

⑦ Construct the residual graph Gf*
(3) Do a BFS to find the nodes reachable in Gf* from s ; let

these define A *

(4) Let B * be all other nodes

(5) Return ( At
,

Blt ) as a minimum capacity cut .


