
So
,

we have a pseudo - poly time algo for Max flow .

How do we design a polynomial time algorithm ?

One algo that  achieves polynomial running time is Edmonds - Karp

Max Flow EK ( G ) :

Set fee ] -

- O tee E

While D= find Shortest Path ( s
,

t
,

Residual Graph ( G ,
f ) ) :

f  

=  augment Lf
, P )

| Update Residual ( Gf )

return f

- So
,

what is the difference between FF and EK ?

- find Path → find Shortest Path

Ithe  only difference is the selection of the augmenting path
Why does this lead to a different runtime analysis ?

• There is an explicit bound Cmn ) on the total # of bottleneck edges
as EK runs

. This limits the total number of iterations of the while

loop and the overall run time .



Theorem : EKmakes at most mn iterations of the while loop

Proof : Consider laying out the vertices of G in layers according to a

BFS from s
,

and let t be at level I
.

Keeping he layout fixed
,

consider the sequence of paths found in the

resulting residual graph .
If a shortest path uses only forward

edges ,
each iteration will cause atleast forward edge to be saturated

and removed from Gf ,
and only backward edges will be added

.

This means that  d does not decrease
,

and as long as d has not  increased
( so that  only forward edges are being used )

,
at least  one forward edge is

eliminated per iteration .

Forward edges will be removed at  most  m times before  either CD D=  o C graph is

disconnected and EK terminates ) or  e) A path  with a  non - forward edge is used C so that

I increases by at least  D .
We can re - layout G and apply the same

argument  again . This shows that the s - t distance  of the selected path

neverdecreases_ .
Further

,
it  increases by at least I

every C at  most ) m

iterations . The minimum path length cannot  increase beyond n .
This

implies we have E Mn iterations  of the while loop .



Running Time :

How long does each iteration take ?

- We can  identify the shortest path using
BFS ( O ( Mtn ) ) time

.

However
, since we  assume every vertex has at least one

incident  edge ,
n E 2M and Ocmtn ) = 0cm )

- Given the path P
, augment takes 0cm ) time

-
 Thus

,
each iteration takes 0cm ) time

EK takes OLM.mn ) -

- O ( m2 n ) time to find a maximum flow
.

Note : This algorithm 's runtime depends only on the specification  of

the graph and not the edge capacities .
It is  what we

call a
"

strongly -

polynomial
"

algorithm .



Now
,

let 's look at how to  use network flow to  solve other interesting problems .

L R
- Bipartite Matching

a 1

E.
g. Set of people L L ) ✓

Here
, edges highlighted in

and jobs L R ) b . z green constitute a- maximum

matching .

• Each person  is  only
c

'

3

qualified for some

subset  of jobs d 4

• Each job is done e 5

by at  most I person

• Can model this  as

- a

matching gives  an  assignment of people to jobs

a bipartite graph
- Want to accomplish as

many
tasks as possible

- Each person is assigned I job
- So we want a maximum matching

(
containing as

many edges as possible )



Problem : Maximum Bipartite Matching

Given a bipartite graph G-  

= ( AUB ,
E )

,
find a matching ME E

,

Such that  

any node appears
in atmostone edge in M

,
and such that

M is as large as possible .

Note :
-

- we are given the bi partition ; no need to find it
- S is a perfect .hig if every vertex is matched
- Maximum is not  maximal ⇒ a greedy algo will give a maximal

matching .



they#pt : Reduction

- Given an  instance of Maximum Bipartite Matching
- Create  an  instance of network flow Such that the solution of the flow

problem can be easily used to find tie solution to the bipartite

matching problem .

Instance of

Bipartite Matching

transform
reduce

Instance of

Network flow
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Transformation

-

:

D Given bipartite graph G = ( AUB
,

E )
,

direct edges from A

to B
2) Add new vertices s and t

3) Add an edge from s to every
vertex  in A

4) Add an edge from every vertex in B to t

5) Make all edge capacities I

6) Solve Max flow on this graph G
'

Claim : The edges used in the Max flow will correspond to the

largest possible matching .



Important Noles :

- Since  capacities are integers ,
flows will be integral

- Since capacities are all 1
, every edge is used completely or notate

-  If M is the set  of edges from A to B we use then

DM is a matching
DM is tie largest possible matching

Theorem : The A  → B edges of our flow  constitute a maximum bipartite matching
in G

Lemma : M is a  matching

Proof : We can choose  at most I edge leaving any
node in A  and at

most I edge entering any
node in B . Otherwise

,
we  would not satisfy

the balance constraints
,

and our solution wouldn't be a  valid flow .

Lemma : M is of maximum size

Proof : If there  is  a  matching
of K edges ,

there  is a flow  of value K :

- f has I unit along each of the K edges ,
I I unit leaks  and

enters
every node but s a t

.



IF there  is  a flow of  valve K
,

there is a matching with k edges
- We find a  maximum flow  with L say ) K edges .

-
 This corresponds to  a  matching

of K edges
- If there were a matching with K '

> K edges , we would have

found a flow  with a valve 7 K
, contradicting that f  was maximum .

- Hence
,

M is maximum
.

Benning-ime?

- Consider the FF algo .
The runtime is bounded by 0cm ' C )

where m
' is the # of edges and

c= I Ce
E out  of S

- C- IAI -

- n

-
 the # of edges in G '

is equal to the number of  edges in G C m )
plus 2n

- So
,

the
running

time is 0(Cmt2n ) n ) = O ( mntnz ) = O ( mn )
This leads immediately to :

Theorem : We  car find a maximum bipartite matching on  a graph with

n vertices and m edges in 0 Cmn ) time .


