
So
,

we have a pseudo - poly time algo for Max flow .

How do we design a polynomial time algorithm ?

One algo that achieves polynomial running time is Edmonds - Karp

Max Flow EK (G) :

Set fee] -

- O tee E

While D= find Shortest Path (s
,

t
,

Residual Graph (G ,
f)) :

f

= augment Lf
, P)

| Update Residual (Gf)

return f

- So
,

what is the difference between FF and EK ?

- find Path → find Shortest Path

Ithe only difference is the selection of the augmenting path
Why does this lead to a different runtime analysis ?

• There is an explicit bound Cmn) on the total # of bottleneck edges
as EK runs

. This limits the total number of iterations of the while

loop and the overall run time .

Theorem : EKmakes at most mn iterations of the while loop

Proof : Consider laying out the vertices of G in layers according to a

BFS from s
,

and let t be at level I
.

Keeping he layout fixed
,

consider the sequence of paths found in the

resulting residual graph .
If a shortest path uses only forward

edges ,
each iteration will cause atleast forward edge to be saturated

and removed from Gf ,
and only backward edges will be added

.

This means that d does not decrease
,

and as long as d has not increased
(so that only forward edges are being used)

,
at least one forward edge is

eliminated per iteration .

Forward edges will be removed at most m times before either CD D= o C graph is

disconnected and EK terminates) or e) A path with a non - forward edge is used C so that

I increases by at least D .
We can re - layout G and apply the same

argument again . This shows that the s - t distance of the selected path

neverdecreases_ .
Further

,
it increases by at least I

every C at most) m

iterations . The minimum path length cannot increase beyond n .
This

implies we have E Mn iterations of the while loop .

Running Time :

How long does each iteration take ?

- We can identify the shortest path using
BFS (O (Mtn)) time

.

However
, since we assume every vertex has at least one

incident edge ,
n E 2M and Ocmtn) = 0cm)

- Given the path P
, augment takes 0cm) time

-
 Thus

,
each iteration takes 0cm) time

EK takes OLM.mn) -

- O (m2 n) time to find a maximum flow
.

Note : This algorithm 's runtime depends only on the specification of

the graph and not the edge capacities .
It is what we

call a
"

strongly -

polynomial
"

algorithm .

Now
,

let 's look at how to use network flow to solve other interesting problems .

L R
- Bipartite Matching

a 1

E.
g. Set of people L L) ✓

Here
, edges highlighted in

and jobs L R) b . z green constitute a- maximum

matching .

• Each person is only
c

'

3

qualified for some

subset of jobs d 4

• Each job is done e 5

by at most I person

• Can model this as

- a

matching gives an assignment of people to jobs

a bipartite graph
- Want to accomplish as

many
tasks as possible

- Each person is assigned I job
- So we want a maximum matching

(
containing as

many edges as possible)

Problem : Maximum Bipartite Matching

Given a bipartite graph G-

= (AUB ,
E)

,
find a matching ME E

,

Such that

any node appears
in atmostone edge in M

,
and such that

M is as large as possible .

Note :
-

- we are given the bi partition ; no need to find it
- S is a perfect .hig if every vertex is matched
- Maximum is not maximal ⇒ a greedy algo will give a maximal

matching .

they#pt : Reduction

- Given an instance of Maximum Bipartite Matching
- Create an instance of network flow Such that the solution of the flow

problem can be easily used to find tie solution to the bipartite

matching problem .

Instance of

Bipartite Matching

transform
reduce

Instance of

Network flow

>
a

'

$ I
l

,

l I

b .

,
B 2§⑤ →c

. I > 3#I
,

>
I

a ! >

> e
'

35
Transformation

-

:

D Given bipartite graph G = (AUB
,

E)
,

direct edges from A

to B
2) Add new vertices s and t

3) Add an edge from s to every
vertex in A

4) Add an edge from every vertex in B to t

5) Make all edge capacities I

6) Solve Max flow on this graph G
'

Claim : The edges used in the Max flow will correspond to the

largest possible matching .

Important Noles :

- Since capacities are integers ,
flows will be integral

- Since capacities are all 1
, every edge is used completely or notate

- If M is the set of edges from A to B we use then

DM is a matching
DM is tie largest possible matching

Theorem : The A → B edges of our flow constitute a maximum bipartite matching
in G

Lemma : M is a matching

Proof : We can choose at most I edge leaving any
node in A and at

most I edge entering any
node in B . Otherwise

,
we would not satisfy

the balance constraints
,

and our solution wouldn't be a valid flow .

Lemma : M is of maximum size

Proof : If there is a matching
of K edges ,

there is a flow of value K :

- f has I unit along each of the K edges ,
I I unit leaks and

enters
every node but s a t

.

IF there is a flow of valve K
,

there is a matching with k edges
- We find a maximum flow with L say) K edges .

-
 This corresponds to a matching

of K edges
- If there were a matching with K '

> K edges , we would have

found a flow with a valve 7 K
, contradicting that f was maximum .

- Hence
,

M is maximum
.

Benning-ime?

- Consider the FF algo .
The runtime is bounded by 0cm ' C)

where m
' is the # of edges and

c= I Ce
E out of S

- C- IAI -

- n

-
 the # of edges in G '

is equal to the number of edges in G C m)
plus 2n

- So
,

the
running

time is 0(Cmt2n) n) = O (mntnz) = O (mn)
This leads immediately to :

Theorem : We car find a maximum bipartite matching on a graph with

n vertices and m edges in 0 Cmn) time .

