Using flow to count disjoint paths.
Given: A directed graph $G=(V, \bar{E})$ and two nodes $s, t \in V$.
Find: The number of edge-disjoint paths from s to t.
Note: Given a collection of paths $P=\left\{p_{1}, \rho_{2}, \ldots, \rho_{k}\right\}$ we say that the paths are edge disjoint if $\forall i \neq j \quad p_{i}$ and p_{j} share no edge in common.

here, $(s, u),(u, v),(v, t)=p_{1}$ and

$$
(s, \omega),(\omega, x),(x, t)=\beta_{2}
$$

are edge-disjoint paths. Any other st path in G would share edges with one of both of these.
dike bipartite matching, we will solve this problem by reducing it to an instance of a flow problem.

The transformation:
Given our original directed graph G, we will create a flow network G^{\prime} in the following way.
Let G^{\prime} have the same vertex set and edge set as G. Further, for all $e \in E$, let $c_{e}=1$.

Now, we make the following claim:
(7.41) If there are K edge-disjoint paths in G from s to t, then the value of the max flow in G^{\prime} is at least K.

Proof: If there exist K edge disjoint paths in G, then there also exist K edge disjoint paths in G^{\prime}, since the topology is identical. Further, since all capacities in G^{\prime} are 1, each such path can carry exactly 1 unit of flow. Hence, each of the k paths can carry 1 unit of flow for a total flow of value k. Hence, G^{\prime} supports a flow of value at least k.

What about the converse?
Claim: If there is a slow of value k in G^{\prime}, then G contains k edgedisjoint paths from s to t.

We show this by the following
(7.42) If f is a $O-1$ flow of valve v, then the set of edges in G^{\prime} with $f(e)=1$ contains a set of v, edge-disjoint paths.

Proof: Induction on \# of edges carrying flow
The case of $v=0$ is trivial. Otherwise, if $v>0$, there must be some edge (s, u) that carries flow from s. However, by conservation, that flow must leave u via some edge (say (u, v)). Likewise, that flow must leave v via some edge (v, w) etc. Continuing this process, there are only 2 possibilities. Either, (a) we eventually reach t or (b) we encounter some node (say v) a second time.
(a) In this case, we've found an s-t path, and it carries exactly 1 unit of flow from $s-t$. Let f^{\prime} be the flow we get by decreasing the flow along each edge of this path by 1 unit. This new flow, f^{\prime}, has valve $v-1$, and we can apply the same procedure on this flow to extract $v-1$ other (edge-disjoint) paths.
(b) If our path P reaches some node v for a second time, then we have a cycle C and the situation looks like the following:

Consider the cycle C of edges that we traverse between the first and second times we visit vertex vo. Consider obtaining a new flow f^{\prime} from f by decreasing the flow along all edges of C to 0 . The new flow f^{\prime} still has value v, but it has fewer edges carrying flow. Thus we can still apply the induction to f^{\prime} to recover the remaining v disjoint paths.
So, in both situations (a) and (b) we make progress, and it is always true that if we have a flow of valve v, we have v edge-disjoint paths carrying the flow.
Together, 7.41 and 7.42 give us G^{\prime} has a flow of value k if and only if G has k disjoint $s-t$ paths.

Moreover, because we are dealing with a 0-1 flow, we can make a strong statement about the runtime of an algorithm to solve this problem.

Assume we use Ford-Fulkerson, which has a worst-case bound of $O(m C)$ where $C=\sum C_{e}$. However, in G^{\prime}, each C_{e} is 1 , and there can e out of s
be at most $|V-1|$ edges leaving S. Thus, FF will always run on such instances in at most $O(m n)$ time.

Note: The approach we found here was constructive. That is, not only can we count the \# of edge-disjoint paths efficiently, we can also extract the actual set of paths in $O(n m)$ time.

Important extensions to consider:

- What if G was undirected? (pg 377-378 of $K+T$)
- What if we wanted node-disjoint paths... how to reduce node disjoint to edge disjoint?

Extensions to flow problems:
Circulation with Demands:

- Suppose there are multiple sources and multiple sinks.
- Each sink wants a certain amount of flow (called the demand of the sink)
- Each source produces a certain amount of flow (called the supply)
- We can represent supply as negative demand.

Egg.

In this problem, constraints change somewhat
Goal: Find a flow that satisfies

1) Capacity constraints: For each $e \in E, 0 \leq f(e) \leq c_{e}$
2) Demand constraints: For each $v \in V, f^{\text {in }}(v)-f^{\text {out }}(v)=d_{v}$

- The demand is the excess flow that should come into the node.

Let S be the set of sources with negative demands (supply) Let T be the set of Sinks with positive clemands

In order for there to be a feasible flow, we must have

$$
\sum_{s \in S}-d_{s}=\sum_{t \in T} d_{t}
$$

Let $D=\sum_{t \in T} d_{t}$ be the total clemand,
So, there appear to be some substantial differences between circulation with demands and Max flow. However, they are equivalent!

Reduction: $G \rightarrow G^{\prime}$

1) Add a new source node s^{*} and an edge (s^{*}, s) for all $s \in S$.
2) Add a new sink node t^{*} and an edge $\left(t, t^{*}\right)$ for all $t \in T$.

The capacity of $\left(s^{*}, s\right)=-d_{s}$ (since $d_{s}<0$, this is positive)
The capacity of $\left(t, t^{*}\right)=d_{t}$

There is a feasible circulation iff G^{\prime} has a flow f^{*} with $v\left(f^{*}\right)=D$.

- Capacity of $(s *, s)$ edges limits the supply of source nodes
- Capacity of $\left(t, t^{*}\right)$ edges allow $d t$ flow to reach t^{*} from each t.
- We can use "normal" max slow to find these circulations.

Here is an example that does work
$G:$

reduction to max flow
G^{\prime}.

Consider a related problem:
X - What if there are multiple "commodities" ie. each sink t_{i} only accepts (demands) flow from source si_{i}. It turns out this modification makes the problem (with integer flows) NP-complete.
$\sqrt{ }$ - What if we also wont a lower bound on the amount of flow going through some edges?
This is a way to require that certain edges are used at some capacity.
Goal: Find a flow f that satisfies

1) Capacity constraints: for each $e \in E$: $\ell_{e} \leq f(e) \leq C_{e}$
2) Demand constraints: for each $v \in V$: $f^{\text {in }}(v)-f^{0 u t}(v)=d_{v}$

Consider an initial flow that sets the flow along each edge equal to the lower bound i.e.: $f_{0}(e)=l e$

- fo satisfies the capacity constraints, but not necessarily the demand constraints

Let $L_{v}=f_{0}^{\text {in }}(v)-f_{0}^{o u t}(v)$
L_{v} is the amount of demand satisfied at each v by fo.
Consider the demand constraints:

$$
f^{\text {in }}(v)-f^{\text {out }}(v)=d_{v}-L_{v}
$$

and capacity constraints

$$
O \leq f(e) \leq C_{e}-l_{v}
$$

These Constraints yield a standard instance of the circulation with demands problem.
ε_{g}.

After our transformation, we

Reduction: Given an instance G of circulation with demands and lower bounds

1) Subtract le from the capacity of each edge e
2) Subtract $L v$ from the demand of each node v

亿
note: This may create new sources or sinks
Then: Solve the "standard" circulation with clemands on this new instance G^{\prime} to get a flow f !.
To find a flow satisfying the original constraints, we add le to every $f^{\prime}(e)$.
This works because reductions can be "chained"
(Circulation with demands + lower bounds $<$
Circulation with demands $<$
$\rightarrow=$ can be reduced to.
$\rightarrow=$ Solution can be transformed to.

