
Using flow to count disjoint paths .

Given : A directed graph G .

- ( YF ) and two  nodes s
,

t  EV .

Find : The number of edge - disjoint paths from s to t .

Note : Given a collection of paths P={ p, ,pz, . . . ,pig } we

say
that the

paths are edge disjoint  if titj pi  and
pj share no edge

in common .
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are edge - disjoint paths . Any other sit

path in G would share edges with one

or both  of these .

Like bipartite matching ,
ve will solve this problem by reducing

it to an instance of a flow problem .



The transformation :

Given  our original directed graph G
,

we will create a flow network
G

'

in the following way
.

Let G
'

have the same vertex set  and edge set as G
.

Further
,

for all e EE
,

let Ce = I
.

Now
,

we make the following claim :

( 7.41 ) If there are K edge
. disjoint paths in G from s to t

,
then  the

value of the max flow in G '
is at least K .

Proof : If there exist K edge disjoint paths in G
,

then there also

exist K edge disjoint paths in G '

,
since the topology is identical .

Further
,

since all capacities  in G
'

are 1
,

each such path can carry
exactly I unit  of flow

.
Hence

,
each of the K paths can

Carry
1  unit  of flow for a total flow of valve K . Hence

,
G '

supports a flow  of value at least k .



What about the converse ?

Claim : If there is a flow  of value K in G
'

,
then G contains K edge -

disjoint paths from s to t
.

We show this by tie following

( 742 ) If f  is a O - I flow  of valve V
,

then the set  of edges in G
'

with
She ) = I contains a set  of v

, edge
- disjoint paths .

Proof : Induction on # of edges carrying flow

The case  of v -

- O is trivial .
Otherwise

, if v > O
,

there most be some edge
C S ,

U ) that  carries flow from S
.

However
, by conservation

,
that flow must leave u

via  some  edge C

say
cu

, v ) )
. Likewise

,
that flow  must leave v via  some edge

( v
, w ) etc . Continuing this process ,

there are only 2 possibilities . Either
,

(a) we eventually reach t or Cb ) we encounter some node C
say v ) a second

time .

(a) In this case
,

we've found an s - t path ,
and it  carries  exactly 1  unit of flow

from s - t
.

Let f ' be the flow  we get by decreasing the flow along each edge
of this path by I unit

.
This new flow

,
f '

,
has  valve v - I

,
and we can  apply

the same procedure on this flow to extract  v - I other ( edge
- disjoint) paths .



(b) If our path P reaches  some node v for  a second time
,

then we have a

cycle C and the situation looks like the following :
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Consider the cycle C of edges that we traverse between the first  and

second times we visit  vertex v .
Consider obtaining a new flow

f
' from f by decreasing the flow along all edges of C to

0 . The new flow f ' stilbestrol ,
but it has fewer edges

carrying flow . Thus we can still apply tu induction to f '
to

recover tee remaining
v disjoint paths .

So
,

in both situations Ca ) and (b) we  make progress ,
and it is always

true that if we have a flow of valve v
,

we have V i

edge - disjoint paths carrying the flow .

Together,
7.41 and 7.42 give us G

'

has a flow  of value K if  and

only if G has kdisjoint s - t paths .



Moreover
,

because we are dealing with a O - I flow , we can make

a strong statement about the runtime of  an algorithm to solve

this problem .

Assume  we use Ford - Fulkerson ,
which has a  worst - case bound of

0 Cmc ) where C- I '

Ce .
However

,
in G

'

, each Ce is 1
,

and there  can

e out  of s

be at most IV -11 edges leaving S .

Thus
,

FF will always run on such

instances in  at most Ocmn ) time .

Note : The approach we found here was constructive .
That  is

,

not  only can we count the # of edge
- disjoint paths efficiently ,

we can also extract the actual set  of paths in Ocnm )
time .

Important extensions to consider :

- What  if G was undirected ? ( pg
377 - 378 of K - T )

- What if we  wanted node - disjoint paths . . . how to reduce

node disjoint to  edge disjoint ?



Extensions to flow problems :

Circulation with Demands :

-

Suppose there are multiple sources and multiple sinks
.

- Each sink wants  a  certain  amount  of flow ( called the demand of the sink )

- Each source produces a certain amount of flow ( called the supply)

- We can represent supply as

n-egativedemand-oc.gr
.

supply di =
- 4
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In this problem ,
constraints change somewhat

Goal : Find a flow that satisfies

D Capacity constraints : For each EEE
,

Of fee ) E Ce

2) Demand constraints : For each vev
,

fincv ) - f-
"

the ) = du

-
 The demand is the excess flow that should come  into the node

.

Let S be the set of sources with negative demands C supply)
Let T be the set  of sinks with positive demands

In order for there to be a feasible flow
,

we must have

¥s - ds =

,
dt

Let D .

'

¥
,

dt be the total demand .

So
, there appear to be some substantial differences between circulation

with demands and Max flow . However
, they are equivalent !



Reduction : G → G '

D Add a new source  node six and an edge C s 't

,
s ) for all se S

.

2) Add a new sink node t 't and an edge ( t
,

ttt ) for all t ET
.

The
capacity

of Cst
,

s ) = - ds C since dss O
,

this  is positive )
The capacity

of Ct
,

t 't ) =  dt

supply di = -4

z .
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There  is a feasible  circulation iff G
'

has
<

a flow f *
with v ( ft ) =D

.

-

Capacity of C s 't
,

s ) edges limits te supply of source nodes
- Capacity of Ct

,
t 't ) edges allow  de flow to reach # from each t

.

• We can use
" normal " Max flow to find these circulations .



Here is  an example that does work
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Consider a related problem :

X - What if there are multiple " commodities " i.e . each sink ti  only
accepts C demands ) flow from source si . It turns  out this

modification makes the problem ( with  . integer flows ) NP - complete .

✓ - What if  we also  want a lowerbouind on the amount  of flow

going through some edges ?

This is a

way
to require that certain edges are used at some capacity .

Goal : Find a flow f that satisfies

D Capacity constraints : for each e EE le E fce ) I Ce

2) Demand constraints : for each vc . V ! fines - foot =  du

Consider an  initial flow that sets he flow along each edge equal
to the lower bound i.e .

: fo Ce ) = le

- fo satisfies the capacity constraints
,

but  not  necessarily the

demand constraints



Let Lv .

- fo
"

C v ) - foot Cv )

Lv is the amount  of demand satisfied at each v by fo
.

Consider the demand constraints :

fincv ) . foot Lu ) = du - Lv
and capacity constraints

Os fee ) E Ce - lv

These Constraints yield a standardising of the circulation  with

demands problem .

Eg . After our transformation
,

we

→ Here
,

he lower -4
bound prevents

have as equivalent  instance
lower TIFF

> I he obvious 9 with no lower bound
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Reduction : Given on instance G of  circulation  with demands and

lower bounds

D Subtract be from the
capacity

of each edge e

2) Subtract Lv from the demand of each node v

n

(
note : This  

may create  new sources or sinks

Then : Solve the " standard " circulation with demands on this new

instance G '
to get a flow f !

To find a flow satisfying the original constraints
,

we add he
to

every
f

'
Ce ) .

This works because reductions can be " chained "

Circulation with demands & lower bounds

§
Circulation with demands→↳ → = can be reduced to

.

Max flow → = Solution can be transformed

to .


