
Using flow to count disjoint paths .

Given : A directed graph G .

- (YF) and two nodes s
,

t EV .

Find : The number of edge - disjoint paths from s to t .

Note : Given a collection of paths P={ p, ,pz, . . . ,pig } we

say
that the

paths are edge disjoint if titj pi and
pj share no edge

in common .

> U 7 V here
,

Cs
,

ol
,

C yes ,
C Yt) =p ,

and
s Pt L Sw)

,
(w , x)

,
(x

,
t) : Pz

> w }x
are edge - disjoint paths . Any other sit

path in G would share edges with one

or both of these .

Like bipartite matching ,
ve will solve this problem by reducing

it to an instance of a flow problem .

The transformation :

Given our original directed graph G
,

we will create a flow network
G

'

in the following way
.

Let G
'

have the same vertex set and edge set as G
.

Further
,

for all e EE
,

let Ce = I
.

Now
,

we make the following claim :

(7.41) If there are K edge
. disjoint paths in G from s to t

,
then the

value of the max flow in G '
is at least K .

Proof : If there exist K edge disjoint paths in G
,

then there also

exist K edge disjoint paths in G '

,
since the topology is identical .

Further
,

since all capacities in G
'

are 1
,

each such path can carry
exactly I unit of flow

.
Hence

,
each of the K paths can

Carry
1 unit of flow for a total flow of valve K . Hence

,
G '

supports a flow of value at least k .

What about the converse ?

Claim : If there is a flow of value K in G
'

,
then G contains K edge -

disjoint paths from s to t
.

We show this by tie following

(742) If f is a O - I flow of valve V
,

then the set of edges in G
'

with
She) = I contains a set of v

, edge
- disjoint paths .

Proof : Induction on # of edges carrying flow

The case of v -

- O is trivial .
Otherwise

, if v > O
,

there most be some edge
C S ,

U) that carries flow from S
.

However
, by conservation

,
that flow must leave u

via some edge C

say
cu

, v))
. Likewise

,
that flow must leave v via some edge

(v
, w) etc . Continuing this process ,

there are only 2 possibilities . Either
,

(a) we eventually reach t or Cb) we encounter some node C
say v) a second

time .

(a) In this case
,

we've found an s - t path ,
and it carries exactly 1 unit of flow

from s - t
.

Let f ' be the flow we get by decreasing the flow along each edge
of this path by I unit

.
This new flow

,
f '

,
has valve v - I

,
and we can apply

the same procedure on this flow to extract v - I other (edge
- disjoint) paths .

(b) If our path P reaches some node v for a second time
,

then we have a

cycle C and the situation looks like the following :

> >

a
s

s v t⇒ ¥..
>

Consider the cycle C of edges that we traverse between the first and

second times we visit vertex v .
Consider obtaining a new flow

f
' from f by decreasing the flow along all edges of C to

0 . The new flow f ' stilbestrol ,
but it has fewer edges

carrying flow . Thus we can still apply tu induction to f '
to

recover tee remaining
v disjoint paths .

So
,

in both situations Ca) and (b) we make progress ,
and it is always

true that if we have a flow of valve v
,

we have V i

edge - disjoint paths carrying the flow .

Together,
7.41 and 7.42 give us G

'

has a flow of value K if and

only if G has kdisjoint s - t paths .

Moreover
,

because we are dealing with a O - I flow , we can make

a strong statement about the runtime of an algorithm to solve

this problem .

Assume we use Ford - Fulkerson ,
which has a worst - case bound of

0 Cmc) where C- I '

Ce .
However

,
in G

'

, each Ce is 1
,

and there can

e out of s

be at most IV -11 edges leaving S .

Thus
,

FF will always run on such

instances in at most Ocmn) time .

Note : The approach we found here was constructive .
That is

,

not only can we count the # of edge
- disjoint paths efficiently ,

we can also extract the actual set of paths in Ocnm)
time .

Important extensions to consider :

- What if G was undirected ? (pg
377 - 378 of K - T)

- What if we wanted node - disjoint paths . . . how to reduce

node disjoint to edge disjoint ?

Extensions to flow problems :

Circulation with Demands :

-

Suppose there are multiple sources and multiple sinks
.

- Each sink wants a certain amount of flow (called the demand of the sink)

- Each source produces a certain amount of flow (called the supply)

- We can represent supply as

n-egativedemand-oc.gr
.

supply di =
- 4

7

76
3 ' 4

I I 4
3

5 9# 48=8
d "

3 14
9 4 v

2 -⑦ 3

a
, \ I

4 I 9
Supply 42=-7 45=3

In this problem ,
constraints change somewhat

Goal : Find a flow that satisfies

D Capacity constraints : For each EEE
,

Of fee) E Ce

2) Demand constraints : For each vev
,

fincv) - f-
"

the) = du

-
 The demand is the excess flow that should come into the node

.

Let S be the set of sources with negative demands C supply)
Let T be the set of sinks with positive demands

In order for there to be a feasible flow
,

we must have

¥s - ds =

,
dt

Let D .

'

¥
,

dt be the total demand .

So
, there appear to be some substantial differences between circulation

with demands and Max flow . However
, they are equivalent !

Reduction : G → G '

D Add a new source node six and an edge C s 't

,
s) for all se S

.

2) Add a new sink node t 't and an edge (t
,

ttt) for all t ET
.

The
capacity

of Cst
,

s) = - ds C since dss O
,

this is positive)
The capacity

of Ct
,

t 't) = dt

supply di = -4

z .

7

76
4

I I 4
3

g 9# 48=8
d "

3 14¥ 29" I2
, 8

soppy ¢ , , ,
,.gg , g)

3

There is a feasible circulation iff G
'

has
<

a flow f *
with v (ft) =D

.

-

Capacity of C s 't
,

s) edges limits te supply of source nodes
- Capacity of Ct

,
t 't) edges allow de flow to reach # from each t

.

• We can use
" normal " Max flow to find these circulations .

Here is an example that does work

42=-3G :

is
-

→
d

,
=-3 I 3

43=2
x. a

4

dy -

- 4

reduction to max flow

G
'

: ④ 13

sit⇒ 3

a.was.
12

4-3*0414

Consider a related problem :

X - What if there are multiple " commodities " i.e . each sink ti only
accepts C demands) flow from source si . It turns out this

modification makes the problem (with . integer flows) NP - complete .

✓ - What if we also want a lowerbouind on the amount of flow

going through some edges ?

This is a

way
to require that certain edges are used at some capacity .

Goal : Find a flow f that satisfies

D Capacity constraints : for each e EE le E fce) I Ce

2) Demand constraints : for each vc . V ! fines - foot = du

Consider an initial flow that sets he flow along each edge equal
to the lower bound i.e .

: fo Ce) = le

- fo satisfies the capacity constraints
,

but not necessarily the

demand constraints

Let Lv .

- fo
"

C v) - foot Cv)

Lv is the amount of demand satisfied at each v by fo
.

Consider the demand constraints :

fincv) . foot Lu) = du - Lv
and capacity constraints

Os fee) E Ce - lv

These Constraints yield a standardising of the circulation with

demands problem .

Eg . After our transformation
,

we

→ Here
,

he lower -4
bound prevents

have as equivalent instance
lower TIFF

> I he obvious 9 with no lower bound
.

\
circulation 2

I
, I

-2
3 a

33
- I

3
N

4734 IN 10 IN to

2- 2

Reduction : Given on instance G of circulation with demands and

lower bounds

D Subtract be from the
capacity

of each edge e

2) Subtract Lv from the demand of each node v

n

(
note : This

may create new sources or sinks

Then : Solve the " standard " circulation with demands on this new

instance G '
to get a flow f !

To find a flow satisfying the original constraints
,

we add he
to

every
f

'
Ce) .

This works because reductions can be " chained "

Circulation with demands & lower bounds

§
Circulation with demands→↳ → = can be reduced to

.

Max flow → = Solution can be transformed

to .

