
NP - Completeness
,

Efficient Computability t Reductions

Goals : Formalize ideas about complexity .
What  does  it mean to be

NP-complete ,
NP - Hard ?

-

not the same !

How  do we show  a problem  is NP-complete ?

Decision  us . Optimization Problems

- So far
,

we've  mostly dealt with optimization problems
-

Computational complexity most commonly
deals with decision problems

-
 The  output  of  decision problems is " Yes "

or

"

No
"  

- ( I or O )
.

- For example ,
circulation  with demands and Max flow  are

both  optimization problems .

The decision version of  a problem is no harder C sometimes

easier than ) the optimization version .



E.
g .

Max Flow ( decision ) :
"

Is there  a flow value  of  at least C ?
"

- If
you

solved the optimization problem , you
 could answer the

decision problem a
For example ,

if
you

find the Max flow

f*
, just return v Cf 't ) > c .

Fact : If the decision problem is hard
,

so  is the optimization problem .

Problem Instances and Encodings
:

For the purpose of
formalizing

the notions of complexity ,
we must

choose how to encode instances of a problem . One natural

way is to encode each instance as a

string
( we can consider

strings of text
,

but these are convertible to binary strings
)

.

E.
g .

An
encoding

of a Max flow  instance might be

4 , Vi
,

C
, ; U2

, Vz , Cz ; . . . S
,

t
,

C

All the problems  we've considered so far
,

and all with which

we 'll be concerned
,

can have their instances represented as strings .

-

They are represented in RAM as a string of bits



A decision problem ,
X

,
is actually just a set of strings

!

E.
g . Instance E X

110,5 ; 3,720 ; 10,3 ,
I

, 7,5 YES

1,195 ; 3,720 ; 193,15 ; ;
I

, 71200 NO

O

: :
°

Definition : A language is a set  of strings
So

, any
"

decision problem
"

is formally equivalent to deciding
Membership in some language .

That is
,

for some decision problem P
,

whose language is L
,

we

say that instance I of P is a YES instance if and

only if encoding
C I ) E L

.

⇒ Note : we will discuss decision problems and languages
almost interchangeably .



How  can  we say that  a decision problem  is hard ?

-

Ultimately ,
we want to

say
that  a computer cannot recognize some language

efficiently .

- For our purposes , Computer means TurningMachine

• The Churingthesis tells us that everything
that  is

efficientlycomputable is efficiently computable on a Turing Machine
.

Turing Machine

or  u  ~

19
-

✓ infinitely
-

long tape
read trite

head

At each time step ,
the Turing Machine

- reads the symbol at the current position
-

Depending on the symbol and current state of the machine
,

it :

• Writes a new symbol X
,

.

moves left or right ,
°

changes to a new

state S



- The Set of symbols is finite and non -

empty
- The set of states is finite and non -

empty

Formally :

M = CQ
,

f
,

b
,

I
,

S
, go ,

F >

Q = finite
, non -

empty set of States

f =

"
" set of tape alphabet  symbols

be f - blank symbol
I E fl Eb 's =  input  symbols C allowed to  

appear  on input tape )

8 : ( Q1 F) xf → Qxfx { L
,
R } = transition function where L

,
R tell

the machine to  move Left  or Right
on the tape .

Cfo
.

 
- initial state

FE Q = final or accepting states
.

The initial tape is accepted by
M if it eventually halts in a state from F

.



Given all of this  machinery , we can define the classy of problems P

Def :P is the set of languages whose memberships  are decidable

by a Turing Machine that  makes a polynomial number of steps .

by the CT thesis
,

this is equivalent
to

Def :P is the set of decision problems that can be decided by
a computer in polynomial time

.

Defining another class
,

NP
,

will require some new  ideas



Certificates
-

Recall the independent set problem

Problem ( Independent Set ) .
Given  a graph G

,
is there a set S of

size 3K such that  no two  nodes in S are connected by an edge ?

- We'll see that finding S
appears to be hard

But
, if I give you

 some set St
, checking whether S

't
is an answer

is
easy

: check that 15*17 K
,

and that  no 2 nodes in St are

connected by an edge .

We
say

that St acts as a certificate that LG
,

K > is a

" Yes "

instance of independent set .



Def : An algorithm B is an efficient certifier for problem X if :

D B is a polynomial
- time algorithm that takes two  input strings

I Can  instance of X ) and C La certificate )

2) B outputs either
" Yes "

or
" No "

3) There exists a polynomial pen ) such that for
every string I :

I c- X if and only if there exists a string C of
length E p ( III ) such that BCI

,
C) =  " Yes "

Thus
,

B is an algo that can decide if an instance I  is a

" Yes "

instance given
the " help

" of a polynomially-long_ certificate .

Def : NP is the set of languages for which there exists

an efficient certifier .

Def : P is the set of languages for which there is an efficient

certifier that gnoresthecert-f.cat .



The main difference :

A problem is in P if we  can decide it in polynomial
time .

It is in NP if we can decide it in polynomial
time

given the right certificate .

Note : We don't need to be able to find the certificate
,

we

just need to be able to use it .

Theorem : PENP

Proof : Assume X EP
. Then there is a polynomial

- time

algorithm A for X .

To show X e NP
,

we need an efficient certifier BC ;
. )

Let BCI
, c) = ALI )

Every problem with a polynomial-time algorithm is in P
.



The big question : P = NP ?

Are there some problems in NP that arent in P ?

Is checking a solution fundamentally easier than finding
one ?

This seems natural
,

but nobody has yet been able to
prove

it !

- P = NP is a remaining
Millenium Problem

-  " Proofs " both
ways appear on arXiv regularly

- It seems fundamentally new techniques will be required
to Solve this problem .



How do we prove
that a problem is likely hard ?

- We'll assume that there exist some problems that have

already been proved to be C probably ) hard
.

We 'll use the concept of  a reduction to show that  some new

problem  is likely hard .

- Problem X is at least as hard C w

y .

-

.
r 't polgtime) as problem

To
prove such a statement

, we 'll ¥problem Ito problem .

If
you

had an algorithm A that  could solve problem X
,

how could
you

solve problem Y
using

a polynomial
number of steps plus a polynomial number of calls

to A ?



Already seen some reductions :

Max Bipartite Matching Ep Max Flow

Circulation with demands t lower bounds Ep Circulation with demands

Circulation with demands Ep Max flow

If problem Y is polynormally reducible to problem X
,

we

denote this as :

Yep X

Thisimplies that X is at least as hard as Y !

* Commit this direction of reduction to
memory

.

One of

the most common mistakes is to do a reduction in

the
wrong

direction . For example ,
if  I show I can

Sort an

array
of numbers by solving Independent Set

,

this does not prove that sorting is hard
, it

shows that  

Independent Set is at least as hard

as sorting
C

.
. . unexciting

) .



Note : We reduce to the problem we wish to show  is at least  as

hard .

Suppose :

. Yep X

• There is a polynomial
- time algo for X

Then
,

there is a polynomial-time algo . for Y . Why ?

- Because polynomials compose

y y- If we can create a polynomial
ynumber of instances of X

,
each Call Ax

in polynomial time
,

and each instance
y

can be solved in polynomial / f
time → we have a polynomial

-

time algorithm for Y .

&

call Ax


