
Let's try another reduction

SAT Ep 3- SAT

-

Very common type of reduction from a general to specific version of
a problem .

- Recall
,

the difference between SAT and 3- SAT is that  in 3- SAT

each clause has 3 literals
.

Reduction
-

Given  an instance I of SAT ,
take every

clause with I 3 literals
as is C note , you

 can always
" pad

" clauses with a 3 literals to have 3) .

Let C -

- Ca
, vazv .

.  - Voy ) be a clause with K > 3 literals
.

Create

a new set of clauses in the 3- SAT instance :

( ai vazvy , )n ( Jiva , vyz ) htyavayvy ,
) . . . ( Tfa, Van , Vala)

Where each of the yi
 are new  variables .

Call the resulting
3- SAT instance I

'
.

The conversion af I to I '

is

clearly polynomial - time
.



Claim : There is a satisfying assignment for C- Ca
, vazv . . . Vala ) iff

is a satisfying assignment for c' = Ca , Vazvy ! v C J , vazvyz ) . .  -

Pref : C '

has a satisfying assignment
 → C has a

satisfying assignment

⇒ If C
'

is satisfied
,

then at least I of a
, , . . .

,
a

,
is true ; otherwise

,

y ,

would have to be true
,

which would force
yz

to be true . . .

so that eventually if , ,
would be false

, along with the whole

clause
.

Thus
, if c I is satisfied ,

some ai is true and so

C is satisfied
.

⇐ If c has a satisfying assignment
 → c

' has a satisfying assignment

Assume
w.l.org that aiis the first true literal in c .

Then
,

set

Yi , .
.

. , Yi -2
to trueand the rest to false . This satisfies all of c

'
.

Thus
, ay instance of SAT can be ( poly - time ) transformed into

an instance af 3- SAT Such that the SAT instance has
a satisfying assignment iff the 3- SAT instance does

.

So

SAT Ep 3- SAT



Beyond P
,

NP and NP - complete .

Note that  we have talked about NP-complete problems as decision problems
that  are  at least as hard as

any problem in UP .

Do not confuse NPfewithNP-hard .

NP-complete problems are required to be in NP C to have efficient certifier )
NP - hard problems are not

,
and some NP - hard problems are not decidable

in any finite time .

Think of the following sketch :

NP-hard
NP - hard

¥¥ ¥
. . .
!

P

If p # Np If f- NP



Some NP - hard problems have decision versions that are NP-complete .

For example ,
the Traveling Salesman Problem asks to find the shortest

Hamiltonian cycle Ca cycle that visits each vertex exactly once
, except

the start vertex to which it returns ) in a graph .

The decision problem asks if  a graph G has  a Hamiltonian

cycle of length E K
,

for which the cycle itself is an efficient
certificate .

Clearly the decision version af TSP is in NP
.

However
,

some decision problems are NP - hard but not
NP - complete C because they are not in NP )

.

One famous example is the
.halting problem .



Informally the halting problem  asks  us to deter ime
,

for pairs C i
,

x )

of programs and input ,
will program

i halt Ceventually terminate ) on

input X .

We wish to know if there exists an algorithm (Turing Machine ) that
can solve the halting problem  in fine time .

Unfortunately ,
there is not .

The proof itself  is a bit  involved
,

bot

here is tie basic concept .

Assume that we had some algorithm ,
halts ( i

TRUE if
program i halts and FALSE if it

' Ilesnot .

Now
, recognize that a program Ci ) is just data

,
so we could write

the following function

def Self Halt ( p ) E

}
return halts ( p ,p )

That is , does program p halt when run on itself ?



Finally , consider feeding the following program p to Self Halt C)

clef paradox ( prog ) {

if Self Halt ( prog ) E
while true ) E }

return
False

;
} else {

return True
}

}
Now

, imagine calling Self Halt C paradox ) . This will run

the paradox C ) function  on  itself
.

If paradox ( paradox ) halts
,

then Self Halt C paradox) should be

true ,
but in that case we take the if branch

,
and the

call goes into  an infinite loop .

If paradox C paradox ) does not halt
,

then we go into the

else branch and return True . . .
which is wrong because

Self Halt L paradox ) Should be False
.

This means that such a general algo as halts ) can not exist !



So
,

the halting problem is undecidable . There is no way to Soke

it on all instances in finite C let alone polynomial ) time .

-
 

There are

many interesting ideas related to this :

← S
'

Godel 's incompleteness theorem

Implications for static program analysis
Determination of what is even Computable ( in finite time ) .

We do not have the time to go deeply into these topics ,'

but I highly recommend
you explore them a bit .



The strange case of co - NP

Our definition of NP is fundamentally asymmetric .

An input string is a
"

yes
" instance iff F t with Itt =p C 1st ) so

that BCS
,

t ) =
"

yes
"

. Negatingthis statement ,
a string s is a

'  '
no "

instance iff force t '

,
Bls

,
t ' I = no . That  is :

- It is easy to  verify we have a solution
-  

It  is hard to verify that he solution exists

NP is concerned with the efficient verification of yes instances
.

For every problem X
,

the complementary problem I is defined
So that for all inputs S :

SE I iff s of X

Note : if XEP then IEP ,
but this is not necessarily the

case for NP .



Def : co . NP - A problem belongs to co - NP if  its

complementary problem belongs to UP .

Example : Subset Sum E  NP
. It  asks

, given a collection of
numbers

,
is there a non -

empty subset whose som  is 0 .

Consider te complement : Given a collection C of numbers
,

return

True iff no non -

empty subset of C sums to 0 . How does

one efficiently verify that he Such subset exists ? I can efficiently
verify "

no " instances of this problem using the same certificate as

for subset  sum
,

but how do I verify
"

yes
" instances ?

Open Question :

Np = co - NP ?
This is widely believed not to be the case .

In fact

If Npt co - Np then P # NP



If Np 't co - Np then PFINP

Proof C contrapositive ) : D= NP ⇒ NP -= co - NP

P is closed under complementation ,
so  if D= NP

,
then NP

is closed under complementation as well . Specifically , assume

f- Np :

XENP ⇒ XEP ⇒ Eep ⇒ I c- NP ⇒ X Eco - NP

and
XE co - up ⇒ IENP ⇒ Iep ⇒ xep ⇒ XENP

Hence NP E co - NP and co - NP E NP so NP = co - NP
DB

The set of decidable problems  is called R
.



Let 's end on a somewhat disturbing note :

Almost all decision problems ¢ The

Why ( proof concept from E
. Domaine )

Consider tie following sets

-

Turing Machines - Decision problems
I = function from input  → { 0,1}

Binary Strings input = binarystring = natural number = IN

=
so it's a function from IN -7 { 0,13

Natural Numbers

(
countably infinite ) IN

Output ° ° I O I l o
. .

.

→ input O I 2 3 4 5 6
. . .

↳ infinite set of bits .

# of functions IN → { 0,13 has a cardinality
muchgreater than IN . It is uncountable infinite .

Almost all problems have no algorithm that solve them !



We have not even scratched the surface here
. . .


