
Suppose we have a new problem to solve
.

we try
① To devise an efficient algorithm for the problem , using he techniques

we've covered
,

or even more advanced techniques .

② To Show that it is unlikely an efficient optimal algorithm exists
.

④ Show that the instances we encounter  in practice do / don't

have some sort of special structure .

③ ?
⇒ Try to design an algorithm that gets us a " good

" C if not  optimal)
Solution in polynomial time .

One such approach is Approximation - Algorithms .



Approximation Algorithms ( AA )

- Run  in polynomial - time
- Provide a solution that is proudly close to optimal .

Key difficulty - show that the solution we find is not far from an

optimal solution ( Note :  in
many

cases where we apply AA
, OPT is hard

to compute)
.

Example : The load balancing problem

Given : A set of m machines M , ,
. . .

,
Mm and a set of n jobs

such that each job j has
processing time tj .

Find : An assignment of jobs to machines that minimizes the

maximum make span .

-

7- maxi Ti where

I -

- jc.fi, tj
and Ali ) is tie set of jobs assigned to machine i .



Note : The load balancing problem is NP - Hard

A greedy Approx . Algo for Load Balancing
-

Assign job j to the machine with te smallest load so far

Greedy - Balance :

Set Ti -

- O and Ali ) = 0 for all Mi
for j - I

,
. . .

,
no .

Let Mi be a machine with a minimum min ,aTk

1¥: use
End

Eg . Consider tu instance M -

- EM
, , Me

, Mz }
,

J= El
, 2,3

, 4,5 ,
6 }

t
,

-

. 2
, tz =3

, +3=4 , -4=6 ,
t -5=2 '

t 6=2
The makes pan here is

Greed - Balance would give 8 C not optimal ; we could

6 z
2 achieve 7

. . .
how ? )

.

3 4
2

M ,
Mz Ms



Let T be the Greedy
- Balance makes pan ,

wish to show that it is not

much larger than T 't
, the optimal make span .

- Don 't have a good way of computing T * generally
- Will consider T us . a

" lower band "

on te optimal solution
.

A lower band is always atleastas.sn# as Tt .

E.g .

T 't 7 In Ejitj
because there must be at least  one machine that does at least

Ym fraction of the work ( i.e . the average work ) .

But
,

what if he tj are

very uneven ? We could find an optimal
Solution that still doesn't match the lower bound .

We want a LB

as tight  as possible .
Consider another :

T 't
7 maxjtj

Because some machine must run the slowest job .



Theorem : Greedy
- Balance produces an assignment with makes pan

TE 2T 't

Proof : When we assigned job j to Mi
,

we know Mi had the smallest
load of are machine . Just before assigning job j , Mi had total

load Titty .
Since this was the smallest load

, every other

machine also had a load at least as large . Thus :

⇐ Tk x m ti -

tj ) or Ti - tj E
'
a Tk ET 't

-
our first
lower bound

Now
,

we account for the remaining
load on Mi ,

which is just tj .

Our second lower bound gives us that  T * 7 , max
, tf,

> tj .

So
,

after assignment of Ej ,
Mi has load

Ti  = L Ti - tj ) ttj ET*tT*=2T*

So
,

our makes pan
is no longer than 2T 't



Put another way , before the addition of j ,
our make span

was at most lower bound I
,

and we added at most

lower bound 2
,

so our total makes pan is I 217

We can indeed come close to this factor  of 2 in practice C i.e
.

not  actually do better than 2T 't )
. Consider he following instance .

M machines and n = Mcm - Dtl jobs . The first n
. I '

 
- Mcm - I ) jobs

have

tj
 

-

 
- I

,
the last job has tj=m .

Our greedy algorithm schedules the first n - t jobs evenly across machines
,

and then assigns the last job to one of these machines resulting
in a make span of T=2m - I

,
while the optimal solution has

a make span  of m

2M - I

him 7=2
m -70

• we can do better !



Sorted - Balance

Ti -

- O
,

Ali ) = 0 for all Mi
Sort jobs in decreasing order of processing

time

for j
-

- I
,

. .
.

, n :

let Mi be the machine with mink Tk1¥ his

End

Consider yet one more lower bound . If there are > m jobs then

T *
Z 2tm+ ,

.
The first  Mtl jobs in the sorted order take

at least tm+ ,
time

,
but they are run on only m machines .

Some machine is assigned 2 such jobs and has processing time

> , 2 tmti °



Theorem : Sorted - Balance produces an assignment with make span

TE ③a) T *

Proof : Consider a machine Mi with maximum load . If Mi has only
1 job ,

the schedule is optimal ( why ? )

Assume Mi has at least 2 jobs ,
let tj be the time required for

the last job assigned . j 7 Mtl C since the first m jobs go to distinct
machines )

.
So tj  E tm+ ,

E Yz T *

Proceeding as in the previous proof ,
we know that Ti - tj ET 't and

tj  HAT * so

( Ti - tj ) t Ej  s T 't
t

'

z T 't  
= ③2) T *


