Suppose we have a new problem to solve.
We try
(1) To devise an efficient algorithm for the problem, using the techniques weive covered, or even more advanced techniques.
(2) To show that it is unlikely an efficient optimal algorithm exists.
(27) Show that the instances we encounter in practice do/don't have some sort of special structure.
(3)?
\Rightarrow Try to design an algorithm that gets us a "good" (if not optimal). solution in polynomial time.
One such approach is Approximation -Algorithms.

Approximation Algorithms (AA)

- Run in polynomial time
- Provide a solution that is provably close to optimal.

Key difficulty - show that the solution we find is not far from an optimal solution (Note: in many cases where we apply AA, OPT is hard to compute).
Example: The load balancing problem
Given: A set of m machines M_{1}, \ldots, M_{m} and a set of n jobs such that each job j has processing time t_{j}.
Find: An assignment of jobs to machines that minimizes the maximum makespan.
$T=\max _{i} T_{i}$ where

$$
T_{i}=\sum_{j \in A(i)} t_{j}
$$

and $A(i)$ is the set of jobs assigned to machine i.

Note: The load balancing problem is NP-Hard
A greedy Approx. Algo for \&oad Balancing

- Assign job jo to the machine with the smallest luad so far

Greedy-Balance:
Set $T_{i}=0$ and $A(i)=\varnothing$ for all μ_{i} for $j=1, \ldots, n$:
$\operatorname{Let} M_{i}$ be a machine with a minimum $\min _{k} T_{K}$

$$
\begin{aligned}
& A(i)=A(i) \cup\{j\} \\
& T_{i}=T_{i}+t_{j}
\end{aligned}
$$

E.y. Consider the instance $M=\left\{M_{1}, M_{2}, M_{3}\right\}, J=\{1,2,3,4,5,6\}$

$$
t_{1}=2, t_{2}=3, t_{3}=4, t_{4}=6, t_{5}=2, t_{6}=2
$$

Greed-Balance would give

The makespan here is 8 (not optimal; we could achieve 7... how?).

Let T be the Greedz-Balance malespan, wish to show that it is not much larger than T^{*}, the optimal makespan.

- Don't have a good way of computing T^{*} generally
- Will consider T vs. a "lower bound" on te optimal solution. A lower bound is always at least as small as T^{*}.
E.g. $\quad T^{*} \geqslant \frac{1}{m} \sum_{j} t_{j}$
because there must be at least one machine that does at least IM fraction of the work (i.e. the average work).
But, what if the t_{j} are very uneven? We could find an optimal solution that still doesn't match the lower bound. We want a LB as tight as possible. Consider another:

$$
T^{*} \geqslant \max _{j} t_{j}
$$

Because some machine must run the slowest job.

Theorem: Greedy -Balance produces an assign ment with makespan

$$
T \leq 2 T^{*}
$$

Proof: When we assigned job j to μ_{i}, we know μ_{i} had the smallest load of any machine. Just before assigning job j; M_{i} had total load $T_{i}-t_{j}$. Since this was the smallest load, every other machine also had a load at least as large. Thus.

$$
\sum_{k} T_{k} \geqslant m\left(T_{i}-t_{j}\right) \text { or } T_{i}-t_{j} \leq \underbrace{\frac{1}{m} \sum_{k} T_{k}}_{\substack{\text { our first } \\ \text { lower bound }}} \leq T^{*}
$$

Now, we account for the remaining bad on μ_{i}, which is just t_{j}. Our second lower bound gives us that $T^{*} \geqslant \max _{k} t_{k} \geqslant t_{j}$.
So, after assignment of t_{j}, M_{i} has load

$$
T_{i}=\left(T_{i}-t_{j}\right)+t_{j} \leq T^{*}+T^{*}=2 T^{*}
$$

So, our makespan is no longer than $2 T^{*}$

Put another way, before the addition of if our makespan was at most lower bound 1, and we added at most lower bound 2, so our total makespan is $\leq 2 T^{*}$

We can incleed come close to this factor of 2 in practice (i.e. rot actually do better than 2 T^{*}). Consider the following instance.
m machines and $n=m(m-1)+1$ jobs. The first $n-1=m(m-1)$ jobs have $t_{j}=1$, the last job has $t_{j}=m$.
Our greedy algorithm schedules the first $n-1$ jobs evenly across machines, and then assigns the last job to one of these machines resulting in a makespan of $T=2 m-1$, while the optimal solution has a makespan of m

$$
\lim _{m \rightarrow \infty} \frac{2 m-1}{m}=2
$$

- We can do better!

Sorted-Balance
$T_{i}=0, A(i)=\varnothing$ for all M_{i}
Sort jobs in decreasing order of processing time
for $j=1, \ldots, n$:
let M_{i} be the machine with $\min _{k} T_{k}$

$$
\begin{aligned}
& A(i)=A(i) \cup\{j\} \\
& T_{i}=T_{i}+t_{j}
\end{aligned}
$$

Consider yet one more lower bound. If there are $>m$ jobs then $T^{*} \geqslant 2 t_{m+1}$. The first $m+1$ jobs in the sorted orcler take at least t_{m+1} time, but they are ron on only m machines. some machine is assigned 2 such jobs and has processing time $\geqslant 2 t_{m+1}$ 。

Theorem: Sorted-Balance produces an assignment with makespan

$$
T \leq(3 / 2) T^{*}
$$

Prob: Consider a machine M_{i} with maximum load. If μ_{i} has only 1 job, the schedule is optimal (why?)
Assume M_{i} has at least 2 jobs, let $t j$ be the time required for the last job assigned. $j \geqslant m+1$ (since the first m jobs $g o$ to distinct machines). So $t_{j} \leq t_{m+1} \leq 1 / 2 T^{*}$
Proceeding as in the previous proof, we know that $T_{i}-t_{j} \leq T^{*}$ and $t_{j} \leq(1 / 2) T^{*}$ so

$$
\left(T_{i}-t_{j}\right)+t_{j} \leq T^{*}+\frac{1}{2} T^{*}=(3 / 2) T^{*}
$$

