
Another
approximation algorithm

-

Weighted
Set Cover

Given : A universe U of n elements
,

and a collection S
, ,

.
. .

,
Sm

of
m subsets

of
U

,
and a non

-

negative weight wi associated

with each Si .

Find : A collection C
of subsets that cover all

of
U with

the smallest total
weight

:

We = I
'

wi

Sit C

Note : This is at least as hard as the decision version

of
set cover C here

,
sets can have

arbitrary weight
 

t 1)
.

Robert Patro




Algorithmic Intuition : Good Sets have

a) Small
weight

Cwi )

e) Cover

many
elements L Isil is

large
)

Pursuing either one
in isolation can lead to

very
poor

solutions
.

Instead
,

we'll search for sets with a
small valve

of

bike willsink I

where R is the

remaining
subset

of
U ( i.e .

the subset of
U that remains uncovered ) .

This selects sets that will
yield the maximommarginalbenef .



G

So
,

our algorithm  will look like
.

Greedy
Wsc :

C- 0

while IU
-

CI > o :

R -

- U
-

C

|
csefegtjs.si

with the largest bi CR)

End

Return C

To make this

practically efficient ,

we will want to maintain

the sets in some sort
of priority queue

, keyed on their

benefit . This is a bit

tricky ,
because after each new set

is selected
,

the benefit  of
many

other sets
might change

.

However
,

there exist

go.cl
data structures C

e.g
. Fib heaps )

that
yield

a

practically
efficient implementation of

Greedy
Wsc

.



Clearly Greedy
WSC isn't optimal

. Can we construct  a bad instance ?

I 1

HE

t•
Greedy WSC here will choose a cover

of weight
4

,

while 2t2e  is

optimal
. Let's

stop
and think for  a moment

why
this

is the case .

Finding
a

meaningful
lower bound

here is harder than in the load -

balancing
problem



Let Cs
=

will Si ARI for all se Si MR

be the cost
paid

"

per
- element

"

when it's

covering
set was

chosen .

We have : If C is the set cover obtained
by Greedy

WSC
,

then

T÷cwi=¥u
Cs . . .

that is
,

the cost of the cover is

simply
the som

of
the costs that we spent

on each element

in U when it was covered
.

The
key

will be to
upper

- bound the ratio
:

I E's
.

"

Vuk

An
optimal solution must cover the full universe via the sets

it contains
,

so we seek a bound an the
weight

it

most use .



We will show :

Lemma : for
every

set Sk
,

the sum

¥
'

.es
is utmost Hllskl ) a

wk .

Where Hln ) = If it is the harmonic function
.

Proof : Assume the elements
of Sk are the first D=15kt elements of U

So 5k = Es
, ,

Sz
,

. .
.

, So, } . Assume
they

are labeled in the order

in which

they
are

assigned
a cost

csj by
the algorithm .

Consider the iteration in which

Sj
is covered for some

je
d .

At this iteration
, Sj , sjn

,
.

.
.

, Sd
ER .

So
15k ARI > d-

jtl ,

and the

average
cost

of Sk is at most

Wky

ISKARI

⇐

d-
jtl

Not
necessarily equality

since

Sj may
be covered in the

Same iteration as some

j
'

with

j
'

a

j
.



In this iteration
, greedy

WSC selected Si  with minimum

average
cost

,

so the
average

cost
of Si is

at most that
of

Sk .
It is the

average
cost

af Si that is

assigned
to

sj
,

so
'

.

so
-

-

Ein '

i¥fI

Adding
such a bound for all elements

,

we

get

II.
Cs

=

II. Cg
.

' II. Itf ,
=YftI÷t

. .  . t YI

= Hld ) .

wk



This leads to

Theorem (
Greedy Weighted

Set Cover ) : The set cover C selected

by Greedy
WSC has

weight
at most H ( d

't

) times the

optimal
weight

w
't

,

where d
*  

=

mix
I Sit

Proof : Let C
't

be an optimal cover so that

C*=¥ecwi
.

For each

Si :

wi > HIS
sics

because this is a valid set cover ( all
of U is covered ) we have

÷4* ? sis
>

Eu
's

with our Lemma
,

this
gives

:

w*= wi >

It .tt#sF.sicsxHTa*s.Eucs=HI*s.eEwi

Note : H C d
't ) =

f (
log

d
't
) so the factor here is up

to logarithmic in d
't !



However
,

d
't

is the size of the
largest

set
.

If this size is

small
,

this can be much better than
log

C n ) . OPT
.

Interestingly ,
it has been shown that no

polynomial
time

approximation
scheme CPTAS ) can achieve a lower bound

much better than c. lcn ) for some fixed constant c

,

unless

p= NP .

How does a bad example
for

Greedy
WSC look ?

nite
ate

NFL

Yl§¥oo÷ooooi€
€ :÷o÷:



Approximation algorithms under reductions :

General properties

D Approximation ratios do not
generally

reduce ie . if one has a

C- factor
approx

for
problem

A and reduces B to A
,

this does

not

imply
c

- factor
approx

for B
.

2) Sometimes
approx

ratios do reduce
,

but

you
have to

practise

3) If a c- factor
approx

is optimal for A
,

and it does

reduce to B
,

that does not  

imply
it  is optimal

for B .

Very
Basic

types
of

approximations

non - constant factor ( as with Set Cover
. . .

approx
badness

grows
 with

Problem )

constant factor (
can get

within Ca OFT )

arbitrary ( can
get

 within C Itt )
. OPT ) for

any
E

.

Gpobynomial time
approximation

scheme PTAS
.



Let's look at a case where the
approx

does reduce
.

Set Cover → Vertex Cover

Weighted Vertex Cover
- Given a

graph
G= LV

,
E) and a

weight
wi for it

V
,

find a vertex cover of G with the smallest

W
-

- I wi

IEC

Does set cover

approx carry
over to VC ?

Theorem : We
can use the

approximation algo from weighted
Set cover

to
give

an H Cd ) -

approximation
for

weighted
vertex cover where

d is the maximum

degree of
a vertex in G .



Pref : Consider
an  instance of weighted

Vertex Cover
specified by

G -

- LV
,

E ) . Define an instance
of weighted

Set cover as in  our

previous reduction .

• Let U
-

- E

' For each view define Si where Si .

-

E E Usvi } I Eu
,

vise E }

w

edges adjacent
to

vi

• Let
weight

L Si ) .

-

wi
 

=

weight of
vertex

vi

Note
,

the maximum size

of
any

Si is

exactly
tie maximum degree of

any
vertex .

It follows

immediately
that a

weighted
set cover of

weight

W

cwi yields
a

corresponding weighted
vertex cover of

equivalent weight
.

Can we do better ? Yes
.

But first
,

a

cautionary example of where an

approx
isn't

preserved .



Consider Vertex Cover and Independent Set
.

Recall

-

Independent Set Ep
Vertex Cover

Does our
approx

for VC
imply

an

approx
for IS ? NO !

Recall I EV is an  

independent
set

riff
5- V

-

I is a vertex cover .

Given a  minimums
vertex  cover S

't

,
we do in fact  obtain a

maximums Independent set
as

I
't

=

V
-

S
.

Suppose we use an

approx aeg
for VC to

get an

approximately
minimum

VC S
.

Then I =

V
-

S is an independent set
,

but it does not

preserve
the

approximation
factor .

Suppose e.g
.

that S
't

and I
*

are both of size WHL
.

If
we

have a 2

approx
for VC

,
we could obtain an answer S=V

,

but then the

corresponding approx independent set

I
= V -

S
= V

- V =

0 has noelements .
. .

the factor 2

approximation
isn't preserved .



A better
approximation algo

for
weighted

vertex cover .

We 'll consider what  is called a
"

pricing

"
method ( ch II. 4)

Intuition :

-

wi  is the
"

cost
" for

using
i in the vertex  cover

-

Each
edge is an

"

agent
" who  is

willing
to

"

pay

"

Something
to the node that coversif .

-

Algo
: in addition to finding

a cover
,

we  will determine
"

prices
"

Pe > 0
,

so that
if each

edge
e

pays pe ,
it  will

approximately
cover tie cost of set S

.

-

We want these
prices

to have a
"

fairness
"

property
!

-12 Pee wi

e-

Cisj

These fair prices
will provide

a lower bound on the cost

of any
solution .



Theorem : For

any
vertex cover S

't

,

and

any
non

-

negative
fairness

prices pe ,

we have

ee¥ Pee
WCS 't

)
.

Pref
: Consider a VC S

't

. By definition of fairness
,

we have

Pee wi for
all nodes it S

't

.

Adding
these

inequalities
over ale

nodes in St
,

we

get
:

iF
j
,

Pe
E

¥1 wi
-

- west )

The LHS is a sum of edge prices pe .
Since S

't

is a VC
,

each
edge

contributes at least  one
pe

term to the LHS
,

but e could be

Covered from bothsides . However
, prices are non

-

negative
and so the

sum
of the LHS is  at least as

large
as to son

of
all

pe
i.e

.

Ee Pe
'

i.pe

combining
with the previous inequality ,

we have

-

Ee Pe
E w ( S

't
)



Algo
:

Approx VCCG
,

w ) :

Set
pe

-

- O fee E

While there  is an e
-

- Li
, j

I such that neither i nor

j
is

"

tight
"

:

/ Increase
pe

without

violating
fairness

END

Let S be tie set
of

all
tight

nodes

Return S

-

A node is
"

tight
"

C paid
for )

if Ifi ,j,Pe=
wi



a a

Example : 4 4

O

30
o

O

o

O

O O
O

O

3 5 3
3 5 3

b
c d b

c d

step I step 2

a
a

4 4

3 01
3

I

O

O

3

O

5
O

3 3

O

5
02

3

b
c d

b
c d

Step 3 Step 4

Now
, every edge

is

adjacent
to  a

'  '

tight
"

node
.

Return { a
,

b
,
d } as the cover .

Note : this is not  

optimal as we could cover  with { a
,

c } of weight
9 .



So
, why

is this a lower bound and not  a tightbomd ( i.e .

why
can the  

edges
not

fully pay
for  a Vc ? ) .

The problem is that  an  edge can
be

adjacent
to more than one vertex

in the vertex cover
,

and so  a

given edge can

pay
for more than

one vertex .

We'll show that we cannot  

overpay
too much .

Specifically ,

Theorem : The set S and
prices p

returned
by

the algorithm satisfy
wcs ) e 2E

'

Pe

ice

Proof : All nodes in S are

tight ,

so I
'

Pe
=

wi for all ie S
.

Summing
over S we have

.

⇐ ' is I
)

west =

swi-n.FI?u,pPe

Ah
edge e

-

- Ci
, j

) can be included on the RHS at most twice ( if
both

it
j

are in S )
,

so

wcss-i.se?qpet-2IIPe



Theorem : The Set S returned
by

our algo
is a VC

,

and

it's cost is at  most twice the cost
of

airy
VC .

Proof First
,

note S is a VC . Suppose , by
contradiction

,

that S

does not  cover some e
.

 - Ci
, j

) . This
implies

that neither

i nor

j
is tight ,

and is a contradiction for the

termination condition
of our while

loop
.

Let
p

be the
prices

set

by
our algo ,

and let S
't

be an optimal
VC

.

We

already
have

2
Pex WCS ) and

¥÷ pee
west )

So
,

the sum

of the
edge prices

is a lower bound on the
weight

of any
vertex cover

,

and twice he sum af te
edge prices

is an

upper

- bound on the

weight of
the Vc our

algorithm
finds

.
Hence :

wcssse.EE pet
2 WLS

't

)


