Checture 3: Basic Graph Algorithms

- Graph $G=(V, E): V$ are vertices, and
$E \subseteq V \times v$ are edges, written as $\{u, v\} \quad u, v \in V$
- Directed Graph - graph in which each edge (u,v) has a direction from u (the tail) to v (the head)
of the edge.
Def: Path P is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{k}$ where each v_{i}, v_{i+1} is joined by an edge.
- a path is simple if no vertex is repeated in P
- a path is a cycle if the length of P is >2 and $v_{1}=v_{k}$

Def: A graph is connected if, $\forall u, v \in V$, there exists a path from u to v
E.g. G_{1}

G_{1} is connected

G_{2} is not connected

Def: A directed graph is strongly connected iff there is a directed path from u to v $\forall u, v \in V$
E.g.

G_{1} is strongly connected

\uparrow
G_{2} is not strongly connected o.g. no directed path from 4 to 3 .

Def: A directed graph is weakly connected if, when viewed as an undirected graph, it is connected.
E.g. G2 above is weakly connected.

Def: An undirected tree is an undirected graph that is connected and contains no cycles.
Some Facts:

- deletion of any edge will disconnect the tree
- rooted tree - imagine we select a node "r" to be the root, and "conceptually" orient all edges "away" from the root.
- on the path from the root to some vertex v, we traverse the ancestors of v. The direct ancestor is the parent and v is its child. Vertices with no children are leaves.

Characterizations of trees $\pm y / y$
(3.1) Fact: Every n-node the has exactly $n-1$ edges. The following statements are all equivalent and all characterize a tree.
(1) T is a tree
(2) T contains no cycles and $n-1$ edges
(3) T is connected and has $n-1$ edges
(4) T is connected and removing any edge disconnects it
(5) Any 2 nodes in T are connected by 1 path
(6) T is acyclic, and adding any edge creates exactly I cycle

Note: remembering these different characterizations of trees will be important when we discuss how to create/find trees. That is, one can view many of these as constructive definitions.

Graph Traversals [Breadth First Search (BFS) and Depth First Search (DFS)]

Problem: st connectivity - given a graph $G=(V, E)$ and two nodes $s, t \in V$, does there exist a path P from s to t ?

One solution to this problem is to perform a BFS from s and see if we encounter t.

- Begin at s, visit all neighbors of s, visit all neighbors of those neighbors... etc.
-vertices are visited in "layers" $s=L_{0}, L_{1}=\{u \in V \mid\{s, u\} \in E\}$,

$$
\cdots, L_{i+1}=\left\{v \in V \mid\{u, v\} \in E \text { and } u \in L_{i}\right\}-\bigcup_{j=0}^{i} L_{j}
$$

Fact: For each $j \geqslant 1, L_{j}$ consists of all nodes from G at a distance of exactly j hops from s. There is an s-t path iff t appears in some layer.

* Note: BFS naturally produces a tree that we
call a BFS-tree.

Consider anoter example: Consider a BFS starting at vertex 1.

-the - edges are in the BFS-bree.

- the - edges are not.

Fact: The nodes of the BFS-tre rooted @ S is precisely the connected component containing s (the set of all t such that an s-t path exists).
mn) BFS provides an order in which to explore the connected components of $G \ldots$ there are other orders like.

DFS (Depth First Search)
\Rightarrow Basic idea: start at S, follow edges until there are no other visited nodes to which to traverse. Backtrack until the current vertex has unvisited reighbors, repeat.
this approach to traversal is "recursive".

Prevecocale
(recursive)
$\operatorname{DFS}(G, u)$:
mark u as visited and add u to R for $\{u, v\}$ incident to u :

If v is not visited:
$1 \operatorname{DFS}(G, v)$
End If
End For
DFS also results in a tree... a DFS-bree

Fact: Given a DFS tree T, and two nodes $x, y \in T$ such that $\{x, y\} \in E$ but $\{x, y\} \notin T$. Then either x is an ancestor of y or y is an ancestor of x.

Main difference in implementation between BFS/DFS is the order in which we visit neighbors of a newly - discovered node.
$\operatorname{BFS}(u, G)$:
Set $v i s i t e d[u]=$ true and visited $[v]=$ false $\forall v \neq u$ to Visit. append (u)

$$
T=\{ \}
$$

While to Visit is not empty:

$$
\begin{aligned}
& v=\text { toVisit, front } \\
& \text { to Visit. Pop Front }
\end{aligned}
$$

for each $\{u, v\}$ adjacent to u :
if visited [v] is false:

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { visited }[v]=\text { true } \\
T=T U\{u, v\} \\
\text { tovisit. append }(v)
\end{array}\right. \\
& \text { End if }
\end{aligned}
$$

End for
End while
Note: We push onto the back of the queue, but we remove from the front. This gives us the relevand breadth-first behavior.
(3.11) Claim: The BFS algorithm cons in $O(m+n)$ time, assuming each incident edge to a vertex can be listed in $O(1)$ time (Q : what graph representations) can do this?)
(non-recursive)
DFS (u):
$T=\{ \} ;$ parent $=\{ \} ; \operatorname{parent}[u]=u$
explored $[v]=$ false $\quad \forall v \in V$
S. push Front (u)

While S is not empty:

$$
u=s \text {. front }
$$

S. pop front
if explored $[u]$ is false:
explored $[u]=$ true
$T=T \cup\{u$, parent $[u]\}$
for each $\{u, v\}$ incident to u :
S. push Front (v)
parent $[v]=u$
End for
End if
End while
\Rightarrow This implementation of DFS is also $O(m+n)$.

Problem: Testing bipartiteness of a graph

- Given a graph $G=(U, E)$, is G bipartite?
\Rightarrow Bonus: return V_{1} and V_{2}, the left + right vertex sits
Recall: A graph $G=(V, E)$ is bipartite iff we can decompose V as $V=V_{1} \cup V_{2}$ such that $\forall\{u, v\} \in E$ either $u \in V_{1}$ and $v \in V_{2}$ or $u \in V_{2}$ and $v \in V_{1}$.
(3.14) Claim: A graph is bipartite iff it contains no cycles of an odd length.
Why? Say (wog) you start at some $x \in V$,
(x) (
if G is bipartite, the first edge must tale you to some $x^{\prime} \in V_{2}$

this edge would prevent G from being bipartite.
the second edge must take you back to sone $x^{\prime \prime} \in V$, If the third edge connects $x^{\prime \prime}$ to x, G car + be bipartite. This is true for any odd lengt cycle

Let G be a connected graph, and let $L_{0}, L_{1}, L_{2}, \ldots$ be the layers of BFS (s).
Then, either
(1) There is no edge of G joining two vertices of the same layer $\Rightarrow G$ is bipartite
(2) There is an edge of G joining 2 vertices of the same layer $\Rightarrow G$ contains an odd-length cycle $\Rightarrow G$ is not bipartite.

Proof: Consider (1).
Every edge of G can be assigned either to vertices within some layer or vertices between adjacent lagers. Since, by (1), no edge joins nodes in the same layer, then every edge is between nodes of adjacent layers. Thus, we can assign every odd layer to V_{1} and every even layer to V_{2}. The resulting labeling shows that the graph is bipartite (i.e. all edges go between V_{1} and V_{2}).

Consider (2). G contains an edge btw verts. of same layer
Let $e=\{u, v\}$ be some such edge with $u, v \in L_{\dot{j}}$. Consider He BFS tree of S, and let Z be the node in the largest layer that is an ancestor of both u aid v. Here, we call z the Lowest Common Ancestor (LCA) of u and v written as $\operatorname{LCA}(u, v)$. We have a situation like the following:

Consider the cycle C defined by $z \leadsto u, e, v \rightarrow z$. What is the length of such a cycle?

$$
|C|=\underbrace{(j-i)}_{z \sim u}+\underbrace{1}_{e}+\underbrace{(j-i)}_{v \leadsto 2}=\underbrace{2(j-i)}_{\text {even }}+\underbrace{2(j)}_{\text {odd }}
$$

Thus, any such cycle is odd in length, and implies that G is not bipartite.

Directed Acyclic Graphs (DAGs) and topological orderings.
DAGs are a special type of directed graph. They will come up again and again in this course (and in algorithms more generally). Being a DAG is equivalent to being a directed graph with no cycles, wish is equivalent to being topologically oiderable.

Example: Encode dependencies in a makefile. What targets need to be built lefore others? DAGs naturally encode precedence or dependency
relationships. relationships.
Def: A topological ordering of a directed graph G is an ordering of its nodes $v_{1}, v_{2}, \ldots, v_{n}$ such that for each $\left.\left(v_{i}\right) v_{j}\right), i<j$. Intuitively, all edges in the ordering point "forward".

(3.18) Proposition: G has a topo. order $\Rightarrow G$ is a DAG

Proof: Suppose not. Let the top. ordering be $v_{1}, v_{2}, \ldots, v_{n}$ and let the be some cycle C. Let v_{i} be the node in C with the lowest index and let v_{j} be the node in C just before v_{i}. Thus $\left(v_{j}, v_{i}\right)$ is an edge. But, since v_{i} was the node in C with the lowest index, we must have $j>i$. This contradicts that $v_{1}, v_{2}, \ldots, v_{n}$ is a topological ordering of G.
Does the converse hold? We will show it does via a constructive proof (an algorithm).
(3.19) Claim: In every DAG G, there is a node with no incoming edges.

Proof: Assume not. Then, the ne must be a cycle
This node (say v) can be safely placed at the beginning of a topological ordering. This is sufficient, with (3.19) and induction, to produce an algorithm.

Inductive Claim: Every DAG has a topological ordering
Base: DAG of size 1,2 are trivial
Assume: This is true fur all DAGs with n nodes.
Then: Given a DAG with $n+1$ nodes, we can find a vertex v with no incoming edges $($ by 3.19$)$. We can place v first in our top logical ordering, since any edges from V point "forward".
Further $G-\{v\}$ is a DAG, since deleting V cannot create cycles. Further, $G-\{v\}$ has n nodes, so we can apply the inductive hypothesis to obtain an order for $G-\{v\}$. The ordering for G
then becomes V ord $(G-\{v\})$. then becomes V, ord $(\dot{G}-\{V\})$.
(3.20) If G is a DAG then G has a topo. ordering.

Alg: $T_{\text {po }}(G):$
Find $v \in G$ with no incoming edges
return $v+\operatorname{Topo}(G-\{v\})$)
To make this $O(m+n)$ rather than $O\left(n^{2}\right)$, we keep an "active" array of size n. A node is "active" if it has not jet been deleted. Also, for each node, maintain
(1) \# of incoming edges to u from "active" nodes
(2) set S of "active" nodes that have no incoming edges from other "active" nodes.

- Then, algo selects node from S, deletes it, and updates neighbors
- Spends at most constant work per-edge during the aldo.

Kahn's algo for topological sorting (wiki)
Topo (G):

$$
L=[]
$$

$S=\{u \mid u$ has no incoming edges $\}$
while S is not empty:
remove node x from S
L.append (x)
for each outgoing edge (x, y) of x :
remove (x, y) from E
if y has no incoming edges:

$$
S_{\varepsilon} S=S \cup\{y\}
$$

End if
End for
End while
if edges remain in G :
return None (no valid topo. ord exists)
else:
return L

