
Lecture 3 : Basic Graph Algorithms

- Graph G -

- ( V
,

E ) : V are  vertices
,

and

E EVXV are edges ,
written as Eu

, v } UN EV

- Directed Graph -

graph in which each edge l um )

has a direction from ucthe tail ) to v C the head )

of the edge .

Def : Path P is a sequence of vertices
V , , Vz ,

. . .

, Vk where  each Vi , vi. , ,
is joined

by an  edge .

-

a path is simple if no vertex is repealed
in P

-

a path is a cycle if the length
of P is > 2 and 4=4 ,

Def : A graph is connected if
, fun EV

,

there exists a path from a to v

E.
g .

G O -
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O_O

GZ

lot It.61dg a
G

,  is connected Gz is not  connected



Def : A directed graph is #gfyconnected

iff there is a directed path from u to V

it  a
,

v e V

4

es .

/
'

}
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O - so

T T
G

,
is stronglyconnected Gz is  notsrongfyconnected

e. g .  no  directed path from

4 to 3
.

Def : A directed graph is weaklyconnected
if ,

when viewed as an undirected graph ,

It is connected
.

E
.

g .
Gz above is weakly connected .

Def : An undirected tree is an undirected graph

that is connected and contains no cycles .

Some Facts :

- deletion of any edge will disconnect
the tree



- rooted tree -

imagine we select  a node "

r " to be

the root
,

and "

conceptually " orient all edges
"

away
" from the root

.

•

on the path from the root to some vertex

I , we traverse the ancestors of v
.

The direct

ancestor  is the parent and v is its child .

Vertices with no children are leaves
-

.

Characterizations of trees t
( 3. D Fact : Every n - node tree has  exactly n - I edges .

The following statements  are all equivalent  and all

characterize a tree .

d) T is  a tree

(2) T contains  no cycles and n - I edges
G) T is connected and has n - I edges
(4) T is connected and

removing any edge
disconnects it

(5) Any 2 nodes in T are connected by 1 path
(G) T is acyclic ,

and
adding any edge creates exact I cycle

Note : remembering these different characterizations of
trees will be important  when we discuss

how to create / find trees .
That is

,
one can

view  

may of tea  as constructive definitions .



Graph Traversals E Breadth first Search ( BFS ) and

Depth first Search ( DFS ) ]

Problem : starting -

given a graph G -

- CV
,

E )
and two  nodes s

,
t  e V

,
does there exist  a path P

from s to t ?

One solution to this problem is to perform  a BFS from S

and see if we encounter t
.

• Begin at s
,

visit all neighbors of s
,

visit all neighbors of
those  neighbors . . .

 etc
.

-

vertices are visited in
"

layers
"

5- Lo
,

L
,

= EUEVI Es
,

u } EE }
. . .

, Lit ,

= Ev e Vl Eu , BEE  and u E Li } - gtfo Lj
↳

so -o_04 6740-0I i \
Lz O O

O_0
↳

'
0

Fact : For each j > I
, Lj consists of all nodes from

G at  a distance of exactly j hops from S
.

There is an s - t path iff t  appears in

some layer .

* Note : BFS naturally produces a tree that we

call a BFS - tree
.

-



Consider another  example : Consider a Bfs starting at vertex 1
.

① - the - edges are  in the

¥307
BFS - tree

,
/

- the - edgesare  not
.

④Isotta
⑥

Fact : The nodes of te BFS - tree rooted @ s is precisely to

connected component  

containing
s ( the set of all t such

that  an S . t path exists ) .

rn > BFS provides an order in which to explore the

connected components of G . . . there are other orders

like .

DFS ( Depth first Search)

⇒ Basic idea : start at s
,

follow edges until there are

no  other visited nodes to which to traverse .

Backtrack until he current vertex has

unvisited neighbors , repeat .

this approach to traversal is " recursive "
.



Pseudocode
( recursive )

DFS ( Gu ) :

mark u as visited and add a to R
for Eu

,
v } incident to u :

If v is  not  visited :

I DFSCG
,

v )
\

End If

End For

DFS also  results in a tree . . . a DFS - tree

① street Q .

.

L i
②  → ③

,
.

'

v
, ; i

⇐¥ofF% " ifI
'

.
.

i ⑤
\' I ⑥"

' ④
Fact : Given a DFS tree T

,
and two nodes

x
, y

c. T such that Ex
, y

} EE but Ex
, y} -4T . Then

either X is an ancestor of
y

or

y
is  an ancestor

of  X .



Main difference  in  implementation between BFSIDFS

is the order  in which we visit neighbors of  a

newly - discovered node
.

BFS ( u
,

G ) :

Sef  visited Ee ] = true  and visited ED = false Hutu
to Visit

.  append Lu )

F- { 3

While to Visit  is  not  empty :

U = to Visit .front

to Visit .pop front

for each Eu , v } adjacent to  u :

if  visited Ev ] is false :hi.÷÷÷÷÷÷.

End for

End while

Note : We push onto the back of the queue ,
but

we remote from the front
. This gives us the

relevance breadth - first behavior
.



( 3.ID Claim : The Dfs algorithm sons in Ocmtn ) time
,

assuming each incident edge to a vertex can be

listed in OCI ) time L Q :  what graph representations )

can do  this ? )
( non - recursive )

DFS cu ) :

F- { 3 ; parent
 = { 3 ; parent -Lus=u

explored Tv ,
= false Ive V

S . push Front L u )

While S is not empty :

U = So front

5.
pop Front

if explored Eu ] is false :

explored Eu ] = true/÷÷÷÷÷÷÷÷:*
. .

End for

End if

End while

⇒ This implementation of DFS is also Ocmtn )
.



Pride Testing bipartite ness of a graph
- Given a graph G -

- CV
,

E )
,

is G bipartite ?
⇒ Bonus :  return V ,and Vz , the left  a right  vertex  sets

Recall: A
graph G= ( V

,
E ) is bipartite iff  we  can

decompose V as V = V
,

U Vz such that

I { u ,v3 E E either UEV
,

and ve Vz or

u E Vz  
and V EV , .

( 3.14 ) Claim : A graph is bipartite iff  it contains

no  cycles of an  odd length .

Why ? Say Lwiog ) you  start  at  some x EV
,

⇒if G is bipartite ,
tie first edge must take

you to

Some X
'

c. Vz

④ -

*
this edge would prevent G from

④ being bipartite .

the second edge must take you backs to some x
" EV

, .

If the third edge connects x
" to x

,
G car t be

bipartite . This  is true for  

any oddlengt cycle



Let G be a connected graph ,
and

let Lo
,

Li
, Lz ,

. . .
be the layers of BFS Cs ) .

Then
,

either

(1) There  is no  edge of G
joining two  vertices  of the

Same layer ⇒ G is bipartite

(2) Thee  is an edge of G joining 2 vertices of
the same layer ⇒ G contains an  odd - length cycle
⇒ G is not bipartite .

Proof : Consider Ll )
.

Every edge of G can be assigned either to

Vertices

withinyer
or vertices

betweenaedjacentagers.
Since

, by Cl )
,

no  edge joins
nodes in the same layer ,

ten every edge is

between nodes of adjacent layers . Thus
,

we can assign every
odd layer to V

, and

every even layer to Vz
.

The resulting labeling
shows that tie graph is bipartite C i.e

.
all edges

go between V ,  and Vz ) .



Consider (2) .

G contains  an  edge btw verts
.  of same layer

Let e=Eu,v } be some such edge with a
,

v  e Lj .
Consider

HeDFS tree  of S
,

and let 2 be the node in the

LargestLayerthat  is an  ancestor of both u  and v .
Here

,
we

call 2 the Lowest Common Ancestor ( LCA ) of u  and v

written  as LCA Cu
,

u ) .
We have  a  situation like the

following :

⑤

}②
Li Cia j )

£10
Lj

Consider the cycle C defined by
Z→ u

,
e

,
v → 2 .

what  is the length of such a

cycle ?

ICI -
- Cj - i ) i It Lj - i ) = 2 ( j - i ) t 1

in w in -

Z → U e v → z every
odd

Thus
, any

such cycle is odd in length ,

and implies that G is notbipartite .



Directed Acyclic Graphs ( DA Gs ) and topological
orderings .

DAGS are a special type of directed graph . They
will come up again

and again in this course C and
in algorithmsmore generally )

. Being a DAG is

equivalent to being a directed graph with no cycles ,

Wich is equivalent to being topologically order able .

Example : Encode dependencies in a make file
.

what targets need to be built before others ?

DAGS naturally encode precedence
¥ips.

-

or
.dependency

Def : A topological Sing of  a directed graph G

is an ordering of its nodes v
, , vz ,

. . . , Vn such that

for each wi , Vj ) ,
i a j . Intuitively ,

all edges in

the ordering point  " forward "
.

② → ③ #
⇒

t #Ag-
⑤ a I ⇒ ①②→③→④⇒⑤→⑥⇒⑦
It g④ X

⑦ c- ①



( 3.18 ) Proposition : G has  a top . . order ⇒ G is a DAG

Pref : Suppose  not
.

Let the topo .  ordering be y , us ,
. .  . gun

and let there be some cycle C
.

Let  vi be the node in C

with the lowest index and let  vj be the node in C

just before vi. Thus L Vj , Vi ) is an  edge . But
,

since

Vi was the node in C with the lowest index
,

we must have j > i
. This contradicts that

Y , vz ,
. .  . gun is a topological ordering of G

.

*¥

Does the converse hold ? We will show it does
via a constructive proof Can algorithms .

( 3.19 ) Claim : In
every DAG G

, here is a node with no

incoming edges .

Proof : Assume  not
.

Then
,

there most be a cycle •

This node C
say v ) can be safely placed at the

beginning of a topological ordering .
This is sufficient

,

with C 3. la ) and induction
,

to produce on algorithm .



Inductive Claim : Every DAG has a topological ordering

Base : DAG of  size 1,2 are trivial

Assume : This  is true for all DAGS  with n nodes
.

Then : Given a DAG with htt nodes
,

we can find a

vertex v with no  

incoming edges Cby 3.19 ) .
We can

place v first in  our topological ordering ,
since

any edges from V point  " forward "
.

Further G . Ev } is  a DAG
,

since deleting V cannot

createcycles .
Further

,
G - EV } has n nodes

,

so we can apply tie inductive hypothesis to  obtain

an  order for G - EV }
.

The
ordering

for G

teen becomes v
,

cord ( G - { V } )
.

( 3.20 ) If G is  a DAG then G has a topo .
 ordering .

Atg : Topo C G ) :

Find v E G with no  incoming edges
return v t  Topo ( G - Ev } )

To  make this 0 ( Mtn ) rather than OC NZ )
,

we keep
an

" active "  

array
of size n . A  node is " active "  if  it

has not yet been deleted .
Also

,
for each node

,
maintain

Cl ) # of incoming edges to u from " active " nodes

L2 ) set S of  " active " nodes that have no incoming
edges from other " active " nodes

.

- Then
, algo selects node from S

,
deletes it ,

and updates neighbors
- Spends at most constant  work per - edge during

the algo .



Kahn 's algo for topological sorting ( wiki )

Topo ( G ) :

L -

- C I

5=61 u has  no  

incoming edges }

while S is not empty :

remove node X from S

L . append C x )
for each outgoing edge Cx

, g) of x :

eases :

End for

End while

if edges remain in G :

return None C no valid topo .  ord exists )
else :

return L


