
Lecture 3 : Basic Graph Algorithms

- Graph G -

- (V
,

E) : V are vertices
,

and

E EVXV are edges ,
written as Eu

, v } UN EV

- Directed Graph -

graph in which each edge l um)

has a direction from ucthe tail) to v C the head)

of the edge .

Def : Path P is a sequence of vertices
V , , Vz ,

. . .

, Vk where each Vi , vi. , ,
is joined

by an edge .

-

a path is simple if no vertex is repealed
in P

-

a path is a cycle if the length
of P is > 2 and 4=4 ,

Def : A graph is connected if
, fun EV

,

there exists a path from a to v

E.
g .

G O -

o_O
O_O

GZ

lot It.61dg a
G

, is connected Gz is not connected

Def : A directed graph is #gfyconnected

iff there is a directed path from u to V

it a
,

v e V

4

es .

/
'

}
2 3

O - so

T T
G

,
is stronglyconnected Gz is notsrongfyconnected

e. g . no directed path from

4 to 3
.

Def : A directed graph is weaklyconnected
if ,

when viewed as an undirected graph ,

It is connected
.

E
.

g .
Gz above is weakly connected .

Def : An undirected tree is an undirected graph

that is connected and contains no cycles .

Some Facts :

- deletion of any edge will disconnect
the tree

- rooted tree -

imagine we select a node "

r " to be

the root
,

and "

conceptually " orient all edges
"

away
" from the root

.

•

on the path from the root to some vertex

I , we traverse the ancestors of v
.

The direct

ancestor is the parent and v is its child .

Vertices with no children are leaves
-

.

Characterizations of trees t
(3. D Fact : Every n - node tree has exactly n - I edges .

The following statements are all equivalent and all

characterize a tree .

d) T is a tree

(2) T contains no cycles and n - I edges
G) T is connected and has n - I edges
(4) T is connected and

removing any edge
disconnects it

(5) Any 2 nodes in T are connected by 1 path
(G) T is acyclic ,

and
adding any edge creates exact I cycle

Note : remembering these different characterizations of
trees will be important when we discuss

how to create / find trees .
That is

,
one can

view

may of tea as constructive definitions .

Graph Traversals E Breadth first Search (BFS) and

Depth first Search (DFS)]

Problem : starting -

given a graph G -

- CV
,

E)
and two nodes s

,
t e V

,
does there exist a path P

from s to t ?

One solution to this problem is to perform a BFS from S

and see if we encounter t
.

• Begin at s
,

visit all neighbors of s
,

visit all neighbors of
those neighbors . . .

 etc
.

-

vertices are visited in
"

layers
"

5- Lo
,

L
,

= EUEVI Es
,

u } EE }
. . .

, Lit ,

= Ev e Vl Eu , BEE and u E Li } - gtfo Lj
↳

so -o_04 6740-0I i \
Lz O O

O_0
↳

'
0

Fact : For each j > I
, Lj consists of all nodes from

G at a distance of exactly j hops from S
.

There is an s - t path iff t appears in

some layer .

* Note : BFS naturally produces a tree that we

call a BFS - tree
.

-

Consider another example : Consider a Bfs starting at vertex 1
.

① - the - edges are in the

¥307
BFS - tree

,
/

- the - edgesare not
.

④Isotta
⑥

Fact : The nodes of te BFS - tree rooted @ s is precisely to

connected component

containing
s (the set of all t such

that an S . t path exists) .

rn > BFS provides an order in which to explore the

connected components of G . . . there are other orders

like .

DFS (Depth first Search)

⇒ Basic idea : start at s
,

follow edges until there are

no other visited nodes to which to traverse .

Backtrack until he current vertex has

unvisited neighbors , repeat .

this approach to traversal is " recursive "
.

Pseudocode
(recursive)

DFS (Gu) :

mark u as visited and add a to R
for Eu

,
v } incident to u :

If v is not visited :

I DFSCG
,

v)
\

End If

End For

DFS also results in a tree . . . a DFS - tree

① street Q .

.

L i
② → ③

,
.

'

v
, ; i

⇐¥ofF% " ifI
'

.
.

i ⑤
\' I ⑥"

' ④
Fact : Given a DFS tree T

,
and two nodes

x
, y

c. T such that Ex
, y

} EE but Ex
, y} -4T . Then

either X is an ancestor of
y

or

y
is an ancestor

of X .

Main difference in implementation between BFSIDFS

is the order in which we visit neighbors of a

newly - discovered node
.

BFS (u
,

G) :

Sef visited Ee] = true and visited ED = false Hutu
to Visit

. append Lu)

F- { 3

While to Visit is not empty :

U = to Visit .front

to Visit .pop front

for each Eu , v } adjacent to u :

if visited Ev] is false :hi.÷÷÷÷÷÷.

End for

End while

Note : We push onto the back of the queue ,
but

we remote from the front
. This gives us the

relevance breadth - first behavior
.

(3.ID Claim : The Dfs algorithm sons in Ocmtn) time
,

assuming each incident edge to a vertex can be

listed in OCI) time L Q : what graph representations)

can do this ?)
(non - recursive)

DFS cu) :

F- { 3 ; parent
 = { 3 ; parent -Lus=u

explored Tv ,
= false Ive V

S . push Front L u)

While S is not empty :

U = So front

5.
pop Front

if explored Eu] is false :

explored Eu] = true/÷÷÷÷÷÷÷÷:*
. .

End for

End if

End while

⇒ This implementation of DFS is also Ocmtn)
.

Pride Testing bipartite ness of a graph
- Given a graph G -

- CV
,

E)
,

is G bipartite ?
⇒ Bonus : return V ,and Vz , the left a right vertex sets

Recall: A
graph G= (V

,
E) is bipartite iff we can

decompose V as V = V
,

U Vz such that

I { u ,v3 E E either UEV
,

and ve Vz or

u E Vz
and V EV , .

(3.14) Claim : A graph is bipartite iff it contains

no cycles of an odd length .

Why ? Say Lwiog) you start at some x EV
,

⇒if G is bipartite ,
tie first edge must take

you to

Some X
'

c. Vz

④ -

*
this edge would prevent G from

④ being bipartite .

the second edge must take you backs to some x
" EV

, .

If the third edge connects x
" to x

,
G car t be

bipartite . This is true for

any oddlengt cycle

Let G be a connected graph ,
and

let Lo
,

Li
, Lz ,

. . .
be the layers of BFS Cs) .

Then
,

either

(1) There is no edge of G
joining two vertices of the

Same layer ⇒ G is bipartite

(2) Thee is an edge of G joining 2 vertices of
the same layer ⇒ G contains an odd - length cycle
⇒ G is not bipartite .

Proof : Consider Ll)
.

Every edge of G can be assigned either to

Vertices

withinyer
or vertices

betweenaedjacentagers.
Since

, by Cl)
,

no edge joins
nodes in the same layer ,

ten every edge is

between nodes of adjacent layers . Thus
,

we can assign every
odd layer to V

, and

every even layer to Vz
.

The resulting labeling
shows that tie graph is bipartite C i.e

.
all edges

go between V , and Vz) .

Consider (2) .

G contains an edge btw verts
. of same layer

Let e=Eu,v } be some such edge with a
,

v e Lj .
Consider

HeDFS tree of S
,

and let 2 be the node in the

LargestLayerthat is an ancestor of both u and v .
Here

,
we

call 2 the Lowest Common Ancestor (LCA) of u and v

written as LCA Cu
,

u) .
We have a situation like the

following :

⑤

}②
Li Cia j)

£10
Lj

Consider the cycle C defined by
Z→ u

,
e

,
v → 2 .

what is the length of such a

cycle ?

ICI -
- Cj - i) i It Lj - i) = 2 (j - i) t 1

in w in -

Z → U e v → z every
odd

Thus
, any

such cycle is odd in length ,

and implies that G is notbipartite .

Directed Acyclic Graphs (DA Gs) and topological
orderings .

DAGS are a special type of directed graph . They
will come up again

and again in this course C and
in algorithmsmore generally)

. Being a DAG is

equivalent to being a directed graph with no cycles ,

Wich is equivalent to being topologically order able .

Example : Encode dependencies in a make file
.

what targets need to be built before others ?

DAGS naturally encode precedence
¥ips.

-

or
.dependency

Def : A topological Sing of a directed graph G

is an ordering of its nodes v
, , vz ,

. . . , Vn such that

for each wi , Vj) ,
i a j . Intuitively ,

all edges in

the ordering point " forward "
.

② → ③ #
⇒

t #Ag-
⑤ a I ⇒ ①②→③→④⇒⑤→⑥⇒⑦
It g④ X

⑦ c- ①

(3.18) Proposition : G has a top . . order ⇒ G is a DAG

Pref : Suppose not
.

Let the topo . ordering be y , us ,
. . . gun

and let there be some cycle C
.

Let vi be the node in C

with the lowest index and let vj be the node in C

just before vi. Thus L Vj , Vi) is an edge . But
,

since

Vi was the node in C with the lowest index
,

we must have j > i
. This contradicts that

Y , vz ,
. . . gun is a topological ordering of G

.

*¥

Does the converse hold ? We will show it does
via a constructive proof Can algorithms .

(3.19) Claim : In
every DAG G

, here is a node with no

incoming edges .

Proof : Assume not
.

Then
,

there most be a cycle •

This node C
say v) can be safely placed at the

beginning of a topological ordering .
This is sufficient

,

with C 3. la) and induction
,

to produce on algorithm .

Inductive Claim : Every DAG has a topological ordering

Base : DAG of size 1,2 are trivial

Assume : This is true for all DAGS with n nodes
.

Then : Given a DAG with htt nodes
,

we can find a

vertex v with no

incoming edges Cby 3.19) .
We can

place v first in our topological ordering ,
since

any edges from V point " forward "
.

Further G . Ev } is a DAG
,

since deleting V cannot

createcycles .
Further

,
G - EV } has n nodes

,

so we can apply tie inductive hypothesis to obtain

an order for G - EV }
.

The
ordering

for G

teen becomes v
,

cord (G - { V })
.

(3.20) If G is a DAG then G has a topo .
 ordering .

Atg : Topo C G) :

Find v E G with no incoming edges
return v t Topo (G - Ev })

To make this 0 (Mtn) rather than OC NZ)
,

we keep
an

" active "

array
of size n . A node is " active " if it

has not yet been deleted .
Also

,
for each node

,
maintain

Cl) # of incoming edges to u from " active " nodes

L2) set S of " active " nodes that have no incoming
edges from other " active " nodes

.

- Then
, algo selects node from S

,
deletes it ,

and updates neighbors
- Spends at most constant work per - edge during

the algo .

Kahn 's algo for topological sorting (wiki)

Topo (G) :

L -

- C I

5=61 u has no

incoming edges }

while S is not empty :

remove node X from S

L . append C x)
for each outgoing edge Cx

, g) of x :

eases :

End for

End while

if edges remain in G :

return None C no valid topo . ord exists)
else :

return L

