
Lecture 4 : Greedy Algorithms

Precise def
.  is difficult

.
A greedy algorithm makes "

locally
" optimal

choices
according to some cost  or score to try to construct agtobalsolution

.
When this leads to an optimal / near - optimal solution

,

that  is "

interesting
"

.

Problem : Interval Scheduling ( Sec 4. 1)

Given : A set R of n requests { I
,

2
, .

. .

,
n }

,
where the ith

request
is an interval of time from Si to fi .

Find : The maximum cardinality subset  of compatible intervals

Note : intervals i and j are compatible if fj  Esi or fi  

esj .

-

the intervals don't overlap in time

What are some
" natural "

greedy approaches to this problem ?



(a) Earliest Interval :

Greedily choose the interval that  "

starts next "

will it  work ?

1- I I - I 1-1 IT 1- I 1-1 H It I - I H 1-1

# NO

"-

(b) Shortest  Interval : Choose the shortest  available interval next

I ¥1
NO

-

(c) Fewest Conflicts : Choose the available interval with smallest # of conflicts

I

No
1- I 1-1

(d) Earliest Finish : Choose the next  available interval that finishes first

Yes



Alg GIS :

R -

- all
requests ,

A- 0
While IRI > O :

Select IER such that fi  is smallest

A  =AUEi3|
R=R/CEi3U{ JERI j conflicts with i3 )

end while

return A

,
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(8)
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③
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⑦
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>



Claim : The  set A returned by GII is compatible .
Cwhy ? )

How do  we show that A  is  optimal ?

- Will show that I At -

- 101 for  are optimal solution
. In particular ,

will show

that the greedy algorithm
"

keeps up
" C does as well as OPT ) on

every ordered prefix of  intervals
.

Let  i
, ,

. . . , ik be the set of intervals  in the order they are added to A
.

( note IAI = K ) .

Let
ji , . . . , j m

be the set of intervals in 0 in left - to -

right  order ( 10km )
.

Note
,

tie requests in 0 must be compatible ,
so  order of

starting times equals
the order of the finish times .

Need to show K = m



( 4.2 ) Lemma : For all re K
,

f  E f tf is finish time  in A
,

f is finish time  in O )
in jsr isr jsr

( Induction )

Proof :

Basecase_ : El is true by def
.  of the greedy algorithm

Inductive Hypothesis E f
- -

:

fish
, jsr - I

Inductees : We Know that Sj , ,
> fj , a ,

( because O 's schedule is  comport)

but
, by IH

, fj , r - , 3 fi
, r . , so that Sj , r 7 fi

,
r - I .

So
,

when GIS

Selects ir ,
the interval jr is in the set R of available intervals

.

But
,

GIS selects the interval with the smallest finish time
,

so fi
,

r
E fig ,

r .

gag



l 4. 3) Imposition : GIS returns  an  optimal set A .

( contradiction )

Prot : Assume A  is not optimal .

Then ( m = lol ) 7 ( K = IAD
.

By (4.2) with r=k
,

we know that fi
, k

E fjsk .
Since m > k by assumption

there most exist some request  j K+ ,
in 0 ( otherwise both would be of size K )

This request , jk+ ,
starts after jk ends . But , fi

, ,s
E Fj , ,a ,

so
,

after

removing
from R all requests not compatible with i

, ,
iz

,
. . .

, in the

request ja ,

must still exist  in R
.

However
,

the
greedy algorithm

terminated with in ,
but  should only terminate  when R is empty .

→ ← c contradiction )
.

Doggy

This shows that the solution
,

A
, produced by GIS has the same cardinality

as some optimal solution 0 . Since all optimal solutions have the same

cardinality ,
A  is optimal .

Could there be other optimal solutions ?



Problem : Interval Partitioning-

Given : A  collection I
, ,

Iz
,

. . .

,
In of intervals

.

Find : A
partitioning

of the intervals into the smallest number of compatible
sets

,
Such that each set can be satisfied by a single

resource .

→
Here

,
tie  number  denotes the interval

,
and tu letter is the resource satisfying

it
.

E.g .

3 c 4 G C 10 C
I I I

C
I I I I I

7- b 9

12b
,

f I I
b

I11al15a
,18 a

,

>

Q : What is the absolute minimum # of resources

required to schedule all requests ?

( can the example above be scheduled with 2 resources ?
why or why not ? )



A : The depth of the interval set is a lower bound on

the resource requirement .

( 4. 4) Lemma : In  an  instance of  Interval Partitioning ,
the # of resources

needed is at least the depth of the set  of intervals
.

Pref : Suppose Th has  depth d
,

and intervals I
, ,Iz ,

. . .

,
Id pass over a

Common point  in time .
Each of these intervals must be

scheduled on a different resource
,

so R requires at least

d resources .

Alg GIP :

Let I
, ,

Iz
,

. .
.

,
In be intervals sorted in order by their start times

For j
- I

,
. . . ,

n :

For each Ii that precedes Ij and conflicts with it

I Exclude label of  Ii from consideration for Ij

| ¥Elaine
.  - -

 ' ed
}

,othItj
hasn't been excluded

Else
I leave Ij unlabeled

return the labeling .



( 4.5 ) Preposition : GIP will assign a label to every
interval and no two

conflicting intervals will receive the same label .

Proofs : Cl ) All intervals are labeled
.

Consider Ij ,
and assume Lwlog )

that t other
preceding

intervals overlap it
.

These intervals
,

along with Ij ,
form a set  of ttl intervals that pass over

a common point in time .

Thus
,

ttl Ed ⇒ tf d - I
.

So
,

one of the d labels is not excluded by the t intervals
and is available to label I j .

(2) No  

overlapping
intervals share a label

.

Let I
,

I
'

be 2

overlappingintervals with Is I
'

C smaller start time ) .
When GIP

considers I
'

,
I 's label is excluded from consideration

,
so GIP

will not assign I 's label to I
'

.

Since this algorithm labels all intervals in a conflict - free way

using
d l the minimum possible # of labels )

,

it produces an

optimal solution
.



Problem : Minimum Lateness
Scheduling

( aka Job
Scheduling)

C Ch 4.2 ]

Given : A set  of request ) length ) deadline tuples ( i
, ti ,

di )
.

Find : A schedule for these requests C
using

a single resources
,

that minimizes the maximum lateness of any request .

The lateness ,

li
 of request i is Li = fi - di if fi > di and 0 otherwise

li  
= {

Fi - di if fi > di

O otherwise

Call LCS ) the maximum Lateness of schedule S
,

where Us )=
miax le.

E.g .  

J
,

t

'
d

,
=L

tr

Jr
42=4

g-
,

t3 43=6

J
, Jz Is

solution I I I I
FF I fa =3 f3=6



How to maximize  our  objective ?

- Schedule jobs in  order of ti ? No
-

 ignores  deadlines
,

consider ( t
,

=/
,

d
,

too )
,

Helo
,

de to )

- Earliest Deadline First ( EDF ) rule ( note : this gnngth )
.

- ensure that jobs with earliest deadlines are scheduled first
.

Alg EDF :

Order jobs by their deadlines and assume we have d ,edzE . .
. sdn

5--5=0
F- S

For i -

- 1,2 , . .  - in

Si  
= f ← start next job asap

fi -

- ft ti t  it runs for ti time/

f .

- ft ti ← all i jobs finish at f

return the schedule E ( S
, ,f ,

)
,

C Sz
,

f)
, . . . ,

Csn

,fnD=AWe want to show that EDF is
-optimal

-

no  other schedule
Could have a lesser maximum lateness



We will show this
using

an exchangesegment . Starting with some optimal
Solution 0

,
and

modifying it into A
, showing

that these modifications

do not increase the max lateness
.

keyterms :

•

gap or idletime : time between the finishing of job i and the

start  of job it I . The time during which our resource is idle .

• inversion : A schedule A
'

has an inversion if job i with

deadline di is scheduled before job j with deadline

dj a di Cj has an earlier deadline )
.

( 4.7 ) Lemma : There is an  optimal schedule with no idle time
.

Proof : This is obvious
,

as we could eliminate idle time without

increasing
L

.



( 4. 8) Lemma : There is an  optimal O with no inversions or idle time
.

Proof : No  idle time ( 4.7 )
.

What  about  inversions ?

(a) If O has an inversion
,

then there is a pair of jobs i
, j

Such that j is immediately after i and dj a di L
why? )

- Suppose O has at least 1  inversion
,

and let  i
, j be the adjacent pair

of
jobs that are inverted . Swapping

i and j eliminates this inversion

without
creating a new  inversion

,
so

(b) Swapping i and j produces a schedule with 1 fewer inversion

(c) This new swapped schedule has a maximum lateness no larger than O

-

assume that  in 0 each request r is scheduled from Sr to fr
and has lateness lr

'

.
Let L' =  

marx
l

'

r .

- Let I be the swapped schedule with Sir Er , tr and I

defined similarly .



- Consider the adjacent  inverted jobs i
, j

-
 

Then fj before the
swap is the same as fi after the

swap because

titty
.  

= tjtti  and the overall start time of the pair  of jobs is

the same in both schedules
.

As a result
,

all jobs other than i
, j

finish at  identical times in the two schedules .

-
 

Job
j finishes earlier in I

,
so swap can 't increase lateness of j

-
 

Job i
may finish later in I

,
but this cannot increase the overall lateness

.

why ?

- If job i is late in I
,

the lateness is ti '

- I - di  = fj - di

But
, because di > dj ( by def of inversion )

, job i cannot be later

in CT than j was in 0 . Specifically ,

( ti -

- fj - di ) sffj - dj=lj )
Since the lateness of O was L 's

,
l

'

j
7 ti ,

the swap cannot
increase the maximum lateness .

DIME



Note : Since the initial optimal schedule can have at most (2) inversions
,

we can transform this into a schedule with no inversions

with at most (2) swaps . By Cc )
,

this can be done without

increasing
the maximum lateness .

(40/0) Proposition : The schedule A produced by EDF has optimal
maximum lateness L

.

Proof : An optimal schedule with no inversions exists ( 4.9 )
,

but all schedules with no inversions have the same

maximum lateness ( 4.8 ) .

So
,

the maximum lateness of Schedule A  with no inversions

must not be greater
than this

-optimal maximum lateness
.

BBB


