
Moving away
from scheduling : problems in Graphs

Problem : Minimum weight S - t path in a graph L with non -

negative
edge weights )

.

Given : A directed graph G -

= CV
,

E ) and a  designated start

node s
. Assuming that s has a path to all other nodes

in G and each edge has a weight

Ice
) 20

Find : The minimum weight path Psv where l CPsv ) =¥p
,Yle ) from

S to every other node v
.

Note : Can easily be made " undirected "

by replacing each edge cu
,

v )

in G with a pair C UN )
,

CV
,

U ) where l ( cu
,

v ) ) = l C L v
,

u ) )



Alg ( due to Dijkstra 1959 )

Idea : Start a
'  ' traversal " at s

,
and keep a set S of explored nodes

where we Know the shortest path length . In each iteration of the

algo ,
add a node adjacent to S to the explored set

,

for  which the distance to this node is smallest
.

Update the distance to this node
,

and add it to S .

Alg : Dijkstra C G
,

s ) :

Let S be the set  of explored nodes t and keep d Cu ) for u E S
Initialize 5=53

,
dcs )=O

While Vts :

• Select vets with at least one edge from S for which

|
.

effing,

) th " un )) is as small as possible

End while



Note : This algorithm C as written ) gives only the s - v distance for all v
.

It can be trivially modified to produce the actual paths as

follows :

- when v is first  added to S via Lu ,
v )

,
Store a

" back pointer
"

v → u .
Each node remembers the edge it  used to join S

.

Recursively,
this remembers the shortest paths from s .

-
-
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g .

.

-
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-

gu
9 y Dijkstra 's after

running
for 2

-
l I

r ,
A iterations of the while loop .

S 4 I II # xI
1 First

, add u
,

set  dca ) = I
.

Then
-

2 >

, I
I 2 2 add v

,
set do ) =L

. In the next
' V I it step , xwillbed .

What  if
\ ,

-
-

- -
-

z

92
we attempted to  add

y or z

instead 2

I
'

The distances would be  

wrong
! We only know the proudly

correct shortest path to the closest node to S at  

any
time .



Proof of correctness  uses a
" stays ahead "

argument  similar to IS
.

( 4014 ) Proposition : Consider tie set S produced by Dijkstra 's alg at
any

point in execution . For every ues
,

the path Psa is a shortest s - u path .

Proof :

Base case : 5=63
,

des ) -

- O is true

IH : Assume this is true for 1st = K

IS : Consider growing
1st to htt by adding some node v via  edge cu ,

u ) -

the final edge in Psv .
Consider

any
other s - v path P

,
we show that

it  must be at least as long as Psv o To reach v
,

P must leave S
Somewhere

,
let

y
be tie first node on P not  in S

,
and let x e S

be the node just before
y .

The situation  is as below
.

Is
x -7 Y

}Ssh> →
v "



proof continued :

up's
x -7 Y

)Ssh> →
v "

We know
, by IH that Rsx is the shortest s - x path with length d Cx)

,

so LCP ' ) 7 l (Ps×) = dcx )
.

Thus
,

the path P to y
has length

UP
' ) t l C x

, g) 7 , d Cx ) t l ( x
, y ) x d

'

Cy ) ,
and the full path to

v is at least as long as this sub path .
But

, Dijkstra 's

gives us that  d
'

Cy ) > , d
' Cv )= l ( Psv) -

since it chooses the smallest

d '

Cv ) -

so that we have LIP ) 7 LCP
' ) t lcx

, y) x l (Psv )
tr



Problem : MST ( Minimum Spanning Tree )

Given : An undirected graph G -

- CV
,
E) and a weight function

d C Eu
, B ) that provides a non

-

negative weight for each edge .

Find : The subgraph T that connects all vertices C spans the graph)
and minimizes

cost IT ) = I
' d ( Eu

,
v } )

{ u
, BET

( 4.16 ) Claim : T will be a tree .
( why ? )

Pref : Suppose T contains some cycle C with edge ee C
.

Then ( V
,

T - Ee3 ) is still connected
,

and has less cost

( or at least cost no greater ) than T
.

→ ←



Sketch of Prim 's algorithm :

c) Given G = ( V
,

E ) and vertex SEV
,

Let T be a
" tree "

containing only s .

(2) Repeat the following Nl . I times :

- Add the lowest cost edge Eu ,v3 such that WET and

V ¢ T to T
.

÷:÷÷÷÷÷÷÷÷÷::



Alg Prins C G
,

s ) :

Parent  = E3

For u EV :  dist To TEU ] = -

U = S

While u t null :

dist To Tcu ] = - a

for ve Neighbors ( u ) :

I :
:

end for

I u = closest Vertex ( dist TOT )
end while

return parent

A Assumption : Edge weights are distinct . This restriction can be lifted

by applying a tiny
"

perturbation
" to the weights of each edge

( so long as the perturbation retains the order of non - ties )
.



To prove correctness of Prim 's
,

we establish the

Eutproperty :

( 4.17 ) Theorem ( MST cut
property)

.
Let S be a subset  of nodes

with 15171 and 1St s IVI . Every MST contains the edge e= Eu
, B

with VES and u EV - S that has minimum weight .

-

-

a cut is just  a . pair ( S
,

V - S ) that partitions or
" cuts "

the graph into two parts .



Proofs : Suppose T does not  contain e .
Since T is connected

,
it

most contain a path P between v and w
,

and P must

Contain some edge f that  "
crosses " the cut

.

But the subgraph T 's (T - Ef 3)U { e } has lower weight than T .

T
'

is still connected since
any path using

P in T can now be

"

re - routed "

using e .
T

'

is acyclic because T
'

U Ef } is the
only

cycle ,
which is eliminated by removing

f
. Finally ,

since

dce ) c d Cf )
,

we have cost t T
' ) a cost CT )

#¥

V
'

w
'

-

§? s . r
s -



( 4.18 ) Claim : Prim 's algorithm produces an MST of G
.

Proof : At
any point F- ( VT

,
ET ) is a subgraph that is a tree

.

T grows by 1 vertex and 1 edge after each iteration
,

So  it stops

after Ngl - 1 iterations and at that point ,
T will be a spanning

tree
.

The pair
(VT

,
Vg - Vy) is a cut of G

. By the cut property
( 4.17 ) the MST contains the lowest  cost edge crossing this

cut
.

This is exactly the edge added to T by Prim 's
, so

Prions only adds edges that must be in the MST



Speeding_upIsalge :

Naive implementation of Prim 's is 0 ( mn )

Idea : for each node v EV - S
,

maintain an attachment cost

acts = m i n Ce
e = Eu ,v3 : UES

If we keep this in a priority queue ,
we can select

the next node to add '

via the Extract Min C ) operation
in OC log n ) time . Then

,
we must update the attachment

costs using Change key C ) in Oleg n )
.

There are n - I iterations where we do Extract Min C ) and we

do Change keg C) at most once per edge ⇒ Total running
time of prions is 0 L m ly n ) .

Recall : Extract Mint ) operation of a PQ returns the element  with
the smallest KeyE.:{

meaner .

Change Key C- ) allows altering the key associated with



Another algorithm to find MST : Kruskal 's algorithm .

Sketch of algorithm : Add edges in increasing order of  weight , skipping
any edge that would create a cycle .

Note : cycles happen when

one adds an edge to  an already connected component .

( 4.18 )
Theorem : Kruskal 's alg . produces an MST of G

Lemm I : Every edge added by Kruskal 's algorithm is justified by the
Cut property .

Proof : Consider e -

- Cv
,

w ) added by Kruskal 's
. Let S be the set

connected to v before e is added . We have v ES and
w EV- S so that adding e creates no cycle . Further

,
no edge

from S to V - S has been seen yet ( or Kruskal 's

would have added it ) . So
,

e is the cheapest edge in

the CS
,

V - S) cut
,

and is in the MST
.

BABA



Lemma 20.
The output of Kruskal 's is a spanning tree

.

Proof : Let LV
,

T ) be the Kruskal 's output . By design
( V

,
T ) contains no  cycles .

If C V
,

T ) was not  connected
,

there would be some SEV with an edge
from S to V - S

.
But

, in that case
,

Kruskal 's

wouldn't have stopped . Thus
,

CV ,
T ) is a connectedgraph

with recycles and is a spanning
tree of G

.

By LemmaI a 2
,

Kruskal 's produces an MST of G
.

Each Ci  is a differentDiagram

⑦J component ,
and edges between

c ,
them have not been

added . Kruskal 's Dicks
the cheapest merge and

f adds the edge .



Efficient  implementation of Kruskal 's

4) Sort the edges by cost : this is 0cm log m )
,

but since men
'

we have lg me ly n
' E 2 lg n so that

0cm lgm) = 0cm ly n )

⇒ 0cm leg n )

(2) Use Union - find to maintain connected components of (V
,

T )
as we add edges . To merge 2 components , compute Find cu ) and

Find Lv ) . If Find Cu ) -

- find C v )
,

then u  and ware in the same

Connected component and we cannot merge .
Otherwise

,

Union ( Find Cu )
,

find Lv ) ) is the new expanded component .

At most 2M " Find "

operations ( Oleg n) each )
At most n - I " Union "

operations ( OCI ) each ) = Ocn ) total

⇒ m lg n t Lm lg n t n = 0cm lg n )

* assume m2 n if G is connected and not

already a tree
.



Interlude : Union - Find ( A  data structure for maintaining
disjoint sets efficiently )

.

Idea : We want to maintain a collection of disjoint subsets

so that we can  do the following efficiently .

C D for  some element e
,

determine the subset to which e belongs
(2) Given two subsets S

,  and Sz
,

create a new subset equal to

their union .

S =
 our  initial set

Start with every EES in  its own set

④④④-
- -

- ④
define the operation Find Cei ) that returns the " representative "

of ei
. Initially ,

this is ei  itself .



④④④-
- -

- ④

how
, imagine we want to union 2 elements ( e ; and ej )

,
we do

this by simply having ei point to ej Cor vice versa ) .

④④ . .
. ⑤. . . .

. - .
. . ⑨

I

now
, ei 's " representative " is simply obtained by walking the pointer

until we reach the " root " of it 's component . Consider the

following scenario .

. . . ④

↳Y Find Cei) -

- Find Lek) -

- Find Gj )=ej



How  do  we join 2 components efficiently ?

Consider

÷÷:÷÷÷÷÷÷:

We simply pointed at ei .
Now

,
all elements that previously had

ei as their representative ( including ei
'

itself ) now have ei  as

their representative .

Was there a motivation for pointing ei
' at ei instead of

vice versa ?

Yes !



When we union 2 components ,
we always point thesmatterone at the Largerone .

This increases the number of parents we must traverse to find

tie representative for nodes in the smaller subtree
,

but

not those originally in the larger subtree
. If trees  are

the same height ,
the number of traversals increases in that

tree by one .

This rule ( union by size  or  union by rank ) guarantees
That a series of m operations will have complexity

of 0cm ly n ) . This is because it limits the tree heights .

The only time the height of the large tree grows is when

both trees have the same height ,
but that can happen

at  most leg n times
.

When tree heights are Oleg n )
,

Find I ) takes lg n time
.

Can also use path - compression to make operations
amortized Own ) )

AL ) is the inverse Ackermann function -

grows so slowly that In )

is essentially constant for  

any n we will encounter .


