
The Eutpopety says
which edges must appear in some MST .

Is there a

way
to guarantee the opposite ?

L4.203 The Iycteproperty : Let G CV
,
E) be a weighted graph

with distinct edge weights and let C be some cycle in G
.

Then if e -

- Ev
,

w3 is the heaviest edge in C
,

it is not

in

any
MST of G .

Proof: Assume such a G and C
, and let T be a spanning

tree of G that contains e . Consider removing e from T .

This partitions T into 2 disjoint components ,
S C containing v)

and V - S C
containing w) . In the original graph ,

because there

was a cycle ,
there was some other path that connected

v and w . Consider the following diagram :

' " " " " is . war

V - S

wlog consider labeling the nodes participating in the cycle as

above
. Since v and X are in the same component ,

there exists Some

V - x path in S
.

Likewise for y and w .

We have removed e from T
,

but we can re - comet T by adding e
'

.
Since we removed

e
, Then adding e

'
won 't create cycles . Further

,
T - Ee } U Ee ' 3

is a spanner . Finally ,
since e was the heaviest edge in the

cycle C
, then T - Ee } U Ee

'

3 is a spanning tree with strictly
lesser weight .

So
,

e cannot be in
any

MST of G
. Bagdad

Clustering : An application of MST

Given : A set of n items pi , Pa , . . . , Pn and a
" distance " function

dcpi , pj) that allows us to measure the distance I dissimilarity
between any pair of objects .

Note : we need that dcp ; , pi) = 0

and dlpi , pj) 70 for pit Pj and dcpi , pj)
= dcpj , pi) ,

but

4C ; .) newbe a metric .

Find : k non -

empty groups partitioning the n items so that the

minimum distance between different groups is maximized .

e.g. :

J
a

①
b c

O

Idea :

- Maintain clusters as a set of connected components in a graph .

-

Iteratively combine clusters containing the two closest items by
adding an edge between them .

- Stop when there are K clusters
.

Note : This is exactly Kruskal 's algorithm with early stopping .

This is often called "

single -

linkage , agglomerative clustering
"

Theorem (MST dust) : The MST clustering algo . produces a set of

clusters C -

- { Ci }i ! ,
with a maximum spacing .

Proof : First
,

observe that stopping Kruskal 's early leads to K clusters
,

this

is equivalent to taking the full MST and removing the K - I most

expensive edges .
The spacing of @ is the length of this (K - Dst

most expensive edge .

Let C
'

be some other K clustering . C
'

must have the same or

smaller separation as C
, why ?

Since Ct C
"

,
there must be some pair pie , pg

.
that are in the

Same cluster Cr in C but in different clusters C 's
,

C 't in C
"

.

.

Since pi , pj are in Cr
,

there is a path Pij between them with

all edges Ed . Some edge of this path must pass between
C 's and C 't , so the separation of C

'

is at most d .

T¥B%

Divideandconquer
- A different algorithm design technique than greedy .

-

Decompose the problem into sub problems - solve recursively
-

recompose

- Will start with how to analyze using recurrencerelah.cn#
and then cover some Dt C algorithms .

- Recurrence relations are useful to analyze running times even

when algos are not efficient
.

Recall the Fibonacci Sequence :

Fn -

- Fn
. it Fna , F- E -

- I

consider a naive impi of fibc) : fib (n) :

if n = o : return O

if n
-

- I or n = 2 : return I

return fibcn - 1) tfibcn - 2)

How can we analyze the running time of Fibt) ?

- We know that In) = Tcn - Dt In - 2) toll)
. That is

,
the time to compote fib (n) is the time to compote

fibcn - D
, Fib (n - 2) and add them C which we assure above is constant)

.

- What does the " tree " of recursive calls look like ?

Fib tree n

n - I n -2

n -2 n -3 n - 3 n -4

Leaves take t time

Fib tree n

n - I n -2

A -2 n -3 n - 3 n -4

Leaves take t time

What is the depth of this tree ? ⇒ def
. bounded by n

How
many

leaves ? ⇒ E 2
"

Do constant work per leaf and
per internal node .

 ⇒ fibers E O (2
")

But is this bound tight ? How fast does the rightmost branch fall off

compared to the leftmost ?
→ for fibcn) , we can do better than 0 (2

")

(1) The root node has valve fib C n)
.

(2) Each leaf contributes exactly I to this sum → fibcn) leaves
(3) This is a binary tree

,
so # internal nodes is # leaves - I = fib C n) - I

(4) Total # of nodes is (2. fibcn)) - I = OC fits C n))
→ it turns out that this is 0cg ") I Oct . 618

")

Drawing a recursion tree is a common way
to analyze the

runtime of recursive (Dec) algorithms .

Lets try with another :

Merge Sort LL) :

if 14=2 : return I min LL)
, max LL)]

else :

LI = Merge Sort (LEO. L ' la)])
be Merge Sort C LEEII: 14 - IT)
return Combine (Ll

,
L2)

or

this isasim#geof
2 sorted lists

,
takes Oct Litt 1h21) time

Total time In) E 21742) t Cn
,

want an upper bound
-2 methods

(A) Recursion tree

(B) Guess a check C via induction)

CA) n Cn work

ma Ma 2(SI) work

My My Me, My 4 (CF) work

,

Steps :

(1)

write out the work done at each level

(2) find the height of the tree

(3) sum over all levels
(1) Here

, we do Cn work per level

(2) Each level reduces n by a factor of 2 → at most ly n levels
(3) Sum :

¥4 en = egn.cn = ccn .

Eg n) = Ocn lg n) work

(B) Substitution

steps :

C , > Show T C K) I FCK) for some small K

(2) Assume TCK) I FCK) for all K a n

(3) Show In) I fl n)
Consider this for Merge Sort

Tcn) E 27142) ten

Base Case

:
712) E 2 . c eg 2

IH : TCK) E C . m lg m m - n

IS :

Ten) I 21742) tch

± 2442) lg L Ma) t Cn

= Cn . lg 412) * Cn

= can [lg (n) - I] ten

= Cn lgCn
) - en t Cn

= Cn tf I n)
###

Merge sort solves 2 equal sized sub problems ,
but what if we divide

into more or fewer parts ?

Consider Tcn) E qT(Ma) t Cn C where of > 2)

e. g . 8=3 Cn

① " 2On12① 12 3 CSI)

¥68668687
u⇒

.
- - - -

- - - -
- - - -

Still lgln) levels , and each does q
't (F) work = (8/2)

't
Cn work

Summing over all levels :

Tense
"

look)tcn= en

"

cgs.gs
.

w
geometric sum with r > ±

r .
look) Tween (rbI) ' cnfr.FI?n)

In) I (¥) n regent

- for all a
,

b > 1 a
log b

= blog a

,
so r

log n

= n
log r

Tcn) E (IT) n
.

n
BY

= (¥) n . nest 812)
= (⇒ n . nega - I

± (I ,)nG⑨=O(neg to))
What about for q= I ?

O en

⑥ cnta

!

Turns out to be Oln)
, try to show this

.

Problem : Counting Inversions

- Suppose customers rank a list of movies

- How can we compare the similarity of these rankings ?

I I
I I

2
3

z 3

3 2
3544
y 4

5 5 5 2

T 9
Similar dissimilar

One measure is # of inversions
-

-

assume one ranking is 1,2 ,
. . . , n

- let other be 9,92 ,
.

. - san

- An inversion is a pair Ci
, j) s 't

.

i < j but aj Lai
.

- two identical rankings have 0 inversions

- How

many
for opposite rankings ?

. . .

(7)

How can we count inversions quickly ?

- Check every pair ? Ocn ')

- Some orderings may have On ') inversions
, so ,

to do better
,

we will have to count multiple inversions at the same time .

- A smart Ddc algo . will give us Och log n)

Suppose I had a
"

recursive " algo that would tell
you for a

, ,
.

. .

, an
of inversions in each half :

- ¥
Inv I Inv 2

n
a

- -
of inversions in each half

What inversions are missed by simply taking Inv I t Ind ?

- The inversions crossing the split ! (half crossing inversions)
.

Consider the following alg .

Sort And Count (L) :

if 14=1 : return O
,

L

A
,
B = first a second halves of L

inv A
,

sorted A = Sort And Count CA)
inv B

,
sorted B = Sort And Count CB)

cross Inv
, sortedL = Merge And Count (Sorted A

,
Sorted B)

return inv At inv Bt cross Inv
,

sorted L

Note : Sorting happens as a byproduct of this algorithm

Half -

crossing
inversions

, A- B

- --
ai > big

What if each Sub list is sorted ?

.
 If we find some ai , big with ai 7 big ,

we can infer many other

inversions . sorted A Sorted B

IT ITIai lbjl= -

-
suppose ai > bj ,

then all items here are cilso larger than big
but we can obtain # of items in the shaded area in constant

Sorted
time . a x

Merge And Count LA
,
B):

a=b= cross count = O
,

out List = E]

while a - IAI and b a IBI :

next = min (Ata]
,

B2b])
out List . append C next)
If DEBT = next

|
else !!!!nt=cross count t IAI -

a

End While

append the non - empty list to out List

return cross Count
, out List

- Note : Merge And Count takes Ocn) time

- What is the running time of Sort And Count ?

- Breaks the problem into 2 halves
,

solves recursively ,

merging is Ocn)
.

Tcn) I -21742) tch

- we have seen exactly this recurrence before
.

It solves to :

Tca) c- Ocn log n)
.

