The Cut Property says which edges must appear in some mst.
Is there a way to guarantee the opposite?
(4.20) The Cycle Property: Let $G=(V, E)$ be a weighted graph with distinct edge weights and let C be some cycle in G. Then if $e=\{V, \omega\}$ is the heaviest edge in C, if is not in any MST of G.

Proof: Assume such a G and C, and let I be a spanning
tree of G that contains e. Consider removing e from T. This partitions T into 2 disjoint components, S (containing v) and $V-S$ (containing w). In the original graph, because there was a cycle, there was some other path that connected v and w. Consider the following diagram:

wog consider labeling the nodes participating in the cycle as above. Since v and x are in the same component, there exists some $v-x$ path in S. Likewise for Y and w. We have removed e from T, but we can re-connet T by adding e^{\prime}. Since we removed e, then adding e^{\prime} wont create cycles. Further, T - $\{e\} \cup\{e$, is a spanner. Finally, since e was the heaviest edge in the cycle C, then $T-\{e\} \cup\left\{e^{\prime}\right\}$ is a spanning tree with strictly lesser weight. So, e cannot be in any MST of G.

Clustering: An application of MST
Given: A set of n items $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ and a "distance" function $\left.d\left(p_{i}\right) p_{j}\right)$ that allows is to measure the distance/dissimilarity between any pair of objects. Note: we reed that $d\left(p_{i}, p_{i}\right)=0$ and $d\left(p_{i}, p_{j}\right)>0$ for $p_{i} \neq p_{j}$ and $\left.d\left(p_{i}, p_{j}\right)=d\left(p_{j}\right) p_{i}\right)$, bot $d(\cdot, 0)$ need not be a metric.

Find: k non-empty groups partitioning the n items so that the minimum distance between different groups is maximized.
$\varepsilon_{.}$. :

Idea:

- Maintain clusters as a set of connected components in a graph.
- Iteratively combine clusters containing the two closest items by adding an edge between them.
- Stop when there are k clusters.

Note: This is exactly kruskal's algorithm with early stopping.
This is often called "single-linkage, agglomerative clustering"

Theorem (MST clust): The MST clustering algo. produces a set of clusters $C=\left\{C_{i}\right\}_{i=1}^{k}$ with a maximum spacing.

Proof: First, observe that stopping Kruskal's early leads to K clusters, this is equivalent to taking the full MST and removing the K-1 most expensive edges. The spacing of C is the length of this $(k-1)^{\text {st }}$ most expensive edge.
Let C^{\prime} be some other k clustering. C' must have the same or smaller separation as C, why?
Since $C \neq C^{\prime}$, there must be some pair p_{i}, p_{j} that are in the same cluster ' C_{r} in C but in different clusters $C_{s}^{\prime}, C_{t}^{\prime}$ in C^{\prime}.

Since p_{i}, p_{j} are in C_{r}, there is a path $P_{i j}$ between them with all edges $\leq d$. Some edge of this path must pass between C_{s}^{\prime} and C_{t}^{\prime}, so the separation of C^{\prime} is at most d.

Divide and Conquer

- A different algorithm design technique than greedy.
- Decompose the problem into subproblems-solve recursively - recompose
- Will start with how to analyze using recurrence relations and then cover some $D+C$ algorithms.
- Recurrence relations are useful to analyze running times even when algos are not efficient.
Recall the Fibonacci Sequence:

$$
F_{n}=F_{n-1}+F_{n-2}, \quad F_{1}=F_{2}=1
$$

Consider a naive impl of fib(): fib (n):
if $n=0$: return 0
if $n=1$ or $n=2$: return 1
return $f i b(n-1)+$ fib $(n-2)$

How can we analyze the coning time of fib(.)?

- We know that $T(n)=T(n-1)+T(n-2)+O(1)$

That is, the time to compute $f i b(n)$ is the time to compote fib $(n-1)$, fib $(n-2)$ and add them (which we assume above is constant).

- What does the "tree" of recursive calls look like?

Fib tree
 Leaves take constant time

Fib tree
 Leaves take constant time

What is the depth of this tree? \Rightarrow def. bounded by n How many leaves?
Do constant work per leaf and per internal node. \Rightarrow fib $(n) \in O\left(2^{n}\right)$
But is this bound tight? How fast does the rightmost branch fall off compared to the leftmost?
\rightarrow for fib (n), we can do better than $O\left(2^{n}\right)$
(1) The root node has value fib(n).
(2) Each leaf contributes exactly 1 to this sum \rightarrow fib(n) leaves
(3) This is a binary tree, so \# internal nodes is \# leaves $-1=f$ ib $(n)-1$
(4) Total \# of nodes is $(2 \cdot f i b(n))-1=O(f i b(n))$
\rightarrow it turns out that this is $O\left(\varphi^{n}\right) \approx O\left(1.618^{n}\right)$
Drawing a recursion tree is a common way to analyze the runtime of recursive ($D+C$) algorithms.

Lets try with another:
Merge Sort (L):
if $|L|=2: \operatorname{return}[\min (L), \max (L)]$
else:

$$
\begin{aligned}
& L 1=\text { Merge Sort }(L[0:\lfloor L L / 2\rfloor]) \\
& L 2=\text { Merge Sort }([[\lfloor L / 2\rfloor+1:|L|-1]) \\
& \text { return Combine }(L \mid, L 2)
\end{aligned}
$$

return Combine $(L 1, L 2)$
this is a simple merge of 2 sorted lists, takes $O(|L 1|+|L 2|)$ time

Total time $T(n) \leq 2 T(n / \alpha)+C n$, want an upper bound - 2 methods
(A) Recursion tree
(B) Guess \& check (via induction)
(A)

Steps:
(1) write out the work done at each level
(2) find the height of the tree
(3) sum over all levels
(1) Here, we do an work per level
(2) Each level reduces n by a factor of $2 \rightarrow$ at most $\lg n$ levels
(3) Sum: $\sum_{i=1}^{\lg n} c n=\lg n \cdot c n=c(n \cdot \lg n)=O(n \lg n)$ work
(B) Substitution

Steps:
(1) Show $T(k) \leqslant f(k)$ for some small k
(2) Assume $T(k) \leq f(k)$ for all $k<n$
(3) Show $T(n) \leq f(n)$

Consider this for Merge Sort

$$
T(n) \leq 2 T(n / 2)+c n
$$

Base Case: $T(2) \leq 2 \cdot c \lg 2$

$$
\begin{array}{ll}
\text { IH } \\
\text { IS }
\end{array} \quad \vdots \quad T(K) \leqslant c \cdot m \lg m \quad m<n
$$

IS:

$$
\begin{aligned}
T(n) & \leq 2 T(n / \alpha)+c n \\
& \leq 2 c(n / \alpha) \lg (n / \alpha)+c n \\
& =c_{n} \cdot \lg (n / \alpha)+c n \\
& =c_{n}[\lg (n)-1]+c n \\
& =c n \lg (n)-c n+c n \\
& =c n \lg (n)
\end{aligned}
$$

Mergesort solves 2 equal sized subproblems, but what if we divide into more or fewer parts?

Consider $T(n) \leq q T(n / \alpha)+c n \quad$ (where $q>2$)
e.g. $q=3$

Still $\lg (n)$ levels, and each does $g^{j}\left(\frac{c n}{2 j}\right)$ work $=(8 / 2)^{j}$ en work Summing over all levels:

$$
T(n) \leq \sum_{j=0}^{\lg (n)-1}(q / 2)^{j} c n=c_{n} \sum_{j=0}^{\lg (n)-1}(q / 2)^{j}
$$

geometric sum with $r>1$

$$
\begin{gathered}
r=(8 / \alpha) \quad T(n) \leq c n\left(\frac{r^{\lg (n)}-1}{r-1}\right) \leq c n\left(\frac{r \lg (n)}{r-1}\right) \\
T(n) \leq\left(\frac{c}{r-1}\right) n r^{\lg (n)}
\end{gathered}
$$

- For all $a, b>1 \quad a^{\log b}=b^{\log a}$, so $r^{\log n}=n^{\log r}$

$$
\begin{aligned}
T(n) & \leq\left(\frac{c}{r-1}\right) n \cdot n^{\lg (r)}=\left(\frac{c}{r-1}\right) n \cdot n^{\lg (8 / 2)}=\left(\frac{c}{r-1}\right) n \cdot n^{\lg (q)-1} \\
& \leq\left(\frac{c}{r-1}\right) n^{\lg (8)}=O\left(n^{\lg (8)}\right)
\end{aligned}
$$

What about for $q=1$?

Turns out to be $O(n)$, try to show this.

Problem: Counting Inversions

- Suppose customers rank a dist of movies
- How can we compare the similarity of these rankings?

Similar

One measure is \# of inversions

- assume one ranking is $1, \alpha_{1} \ldots, n$
- let other be $a_{1}, a_{2}, \ldots, a_{n}$
- An inversion is a pair (i, j) s.t. $i<j$ bot $a_{j}<a_{i}$
- two identical rankings have O inversions
- How many for opposite rankings?

How can we count inversions quickly?

- Check every pair? $O\left(n^{2}\right)$
- Some orderings may have $O\left(n^{2}\right)$ inversions, so, to do better, we will have to count multiple inversions at the same time.
- A smart $D+C$ alga. will give us $O(n \lg n)$

Suppose I had a "recursive" algo that would tell you for a_{1}, \ldots, a_{n} \# of inversions in each half:

What inversions are missed by simply taking $I_{n u} 1+I_{n u d}$?

- The inversions crossing the split! (half crossing inversions).

Consider the following alg.
Sort And Count (L):
if $|L|=1$: return 0 , L
$A, B=$ first + second halves of L

$$
\begin{aligned}
& \operatorname{inv} A, \text { sorted } A=\text { Sort } A \text { nd } C \text { aunt }(A) \\
& \text { inv } B \text {, sorted } B=\text { Sort And Count }(B)
\end{aligned}
$$

cross Inv, sorted $L=$ Merge And Count (Sorted A, Sorted B)
return inv $A+i n v B+$ cross Inv, sorted L
Note: Sorting happens as a byproduct of this algorithm
Half-crossing inversions
B

What if each sublist is sorted?

- If we find some a_{i}, b_{j} with $a_{i}>b_{j}$, we can infer many other inversions.

sorted B

Suppose $a_{i}>b_{j}$, then all items here are also larger than b_{j} but we can obtain \# of items in the shaded area in constant time. sorted
Merge And Count ($\stackrel{\swarrow}{A}, \stackrel{\rightharpoonup}{\prime})$:
$a=b=$ cross count $=0$, out List $=[]$
while $a<|A|$ and $b<|B|$:

$$
\text { next }=\min (A[a], B[b])
$$

out List. append (next)
If $B[b]=$ next

$$
b=b+1
$$

$$
\text { cross count }=\text { crosscount }+|A|-a
$$

else

$$
a=a+1
$$

End while
append the non-empty list to out List return crossCount, out List

- Note: Merge And Count takes $O(n)$ time
-What is the cunning time of Sort And Count?
- Breaks the problem into 2 halves, solves recursively, merging is $O(n)$.

$$
T(n) \leq 2 T(n / 2)+c n
$$

- We have seen exactly this recurrence before.
It solves to:

$$
T(n) \in O(n \lg n)
$$

