
The Eutpopety says
which edges must appear in some MST .

Is there a

way
to guarantee the  opposite ?

L4.203 The Iycteproperty : Let G CV
,
E) be a weighted graph

with distinct edge weights and let C be some cycle in G
.

Then if e -

- Ev
,

w3 is the heaviest edge in C
,

it is not

in

any
MST of G .



Proof: Assume such a G and C
, and let T be a spanning

tree of G that contains e . Consider removing e from T .

This partitions T into 2 disjoint components ,
S C containing v )

and V - S C
containing w ) . In the original graph ,

because there

was a cycle ,
there was some  other path that connected

v and w . Consider the following diagram :

' " " " " is . war

V - S

wlog consider labeling the nodes participating in the cycle as

above
. Since v and X are in the same component ,

there exists Some

V - x path in S
.

Likewise for y and w .

We have removed e from T
,

but we can re - comet T by adding e
'

.
Since we removed

e
, Then adding e

'
won 't create cycles . Further

,
T - Ee } U Ee ' 3

is a spanner . Finally ,
since e was the heaviest edge in the

cycle C
, then T - Ee } U Ee

'

3 is a spanning tree with strictly
lesser weight .

So
,

e cannot be in
any

MST of G
. Bagdad



Clustering : An application  of  MST

Given : A set  of n items pi , Pa , . . . , Pn and a
" distance " function

dcpi , pj ) that allows us to measure the distance I dissimilarity
between  any pair of objects .

Note : we need that  dcp ; , pi ) = 0

and dlpi , pj ) 70 for pit Pj  and dcpi , pj)
= dcpj , pi ) ,

but

4C ; . ) newbe a metric .

Find : k non -

empty groups partitioning the n items so that the

minimum distance between different groups is maximized .

e.g. :

J
a

①
b c

O



Idea :

- Maintain  clusters as a set  of connected components in a graph .

-  

Iteratively combine clusters containing the two closest items by
adding an edge between them .

- Stop when there are K clusters
.

Note : This is exactly Kruskal 's algorithm with early stopping .

This is often called "

single -

linkage , agglomerative clustering
"

Theorem ( MST dust ) : The MST clustering algo . produces a set  of

clusters C -

- { Ci }i ! ,
with a maximum spacing .



Proof : First
,

observe that stopping Kruskal 's early leads to K clusters
,

this

is equivalent to taking the full MST and removing the K - I most

expensive edges .
The spacing of @ is the length of this ( K - Dst

most expensive edge .

Let C
'

be some other K clustering . C
'

must have the same  or

smaller separation as C
, why ?

Since Ct C
"

,
there must be some pair pie , pg

.
that are in the

Same cluster Cr in C but in different  clusters C 's
,

C 't in C
"

.

.

Since pi , pj are  in Cr
,

there  is a path Pij between them with

all edges Ed . Some edge of this path must pass between
C 's and C 't , so the separation of C

'

is at most d .

T¥B%



Divideandconquer
- A  different algorithm design technique than greedy .

-

Decompose the problem  into sub problems - solve recursively
-

recompose

- Will start  with how to  analyze using recurrencerelah.cn#
and then cover some Dt C algorithms .

- Recurrence relations are useful to analyze running times even

when algos  are not efficient
.

Recall the Fibonacci Sequence :

Fn -

- Fn
. it Fna , F- E -

- I

consider a naive impi of fibc ) : fib ( n ) :

if n = o : return O

if n
-

- I or n = 2 : return I

return fibcn - 1) tfibcn - 2)



How can we analyze the running time  of Fibt ) ?

- We know that In ) = Tcn - Dt In - 2) toll )
. That  is

,
the time to compote fib ( n ) is the time to  compote

fibcn - D
, Fib ( n - 2) and add them C which we assure above is  constant)

.

- What does the " tree " of recursive  calls look like ?

Fib tree n

n - I n -2

n -2 n -3 n - 3 n -4

Leaves take t time



Fib tree n

n - I n -2

A -2 n -3 n - 3 n -4

Leaves take t time

What is the depth of this tree ? ⇒ def
. bounded by n

How
many

leaves ? ⇒ E 2
"

Do constant  work per leaf  and
per  internal node .

 ⇒ fibers E O ( 2
" )

But is this bound tight ? How fast  does the rightmost branch fall off

compared to the leftmost ?
→ for fibcn ) , we can do better than 0 ( 2

" )



(1) The root node has valve fib C n )
.

(2) Each leaf contributes exactly I to this sum  → fibcn ) leaves
(3) This is a binary tree

,
so #  internal nodes is # leaves - I = fib C n ) - I

(4) Total #  of nodes is ( 2. fibcn ) ) - I = OC fits C n ) )
→ it turns  out that this is 0cg " ) I Oct . 618

" )

Drawing a recursion tree is a common way
to  analyze the

runtime of recursive ( Dec ) algorithms .

Lets try with another :

Merge Sort LL ) :

if 14=2 : return I min LL )
, max LL ) ]

else :

LI =  Merge Sort ( LEO. L ' la ) ] )
be Merge Sort C LEEII: 14 - IT)
return Combine ( Ll

,
L2 )

or

this isasim#geof
2 sorted lists

,
takes Oct Litt 1h21 ) time



Total time In ) E 21742 ) t Cn
,

want an  upper bound
-2 methods

(A) Recursion tree

(B) Guess a check C via induction )

CA) n Cn work

ma Ma 2( SI ) work

My My Me, My 4 ( CF) work

,

Steps :

(1)

write out the work done at each level

(2) find the height  of the tree

(3) sum  over all levels
(1) Here

, we do Cn work per level

(2) Each level reduces n by a factor of 2 → at most ly n levels
(3) Sum :

 

¥4 en = egn.cn = ccn .

Eg n ) = Ocn lg n ) work



(B) Substitution

steps :

C , > Show T C K ) I FCK ) for some small K

(2) Assume TCK ) I FCK ) for all K a n

(3) Show In ) I fl n )
Consider this for Merge Sort

Tcn ) E 27142 ) ten

Base Case

:
712 ) E 2 . c eg 2

IH : TCK ) E C . m lg m m - n

IS :

Ten ) I 21742 ) tch

± 2442 ) lg L Ma ) t Cn

= Cn . lg 412 ) * Cn

= can [ lg ( n ) - I ] ten

= Cn lgCn
) - en t Cn

= Cn tf I n )
###



Merge sort solves 2 equal sized sub problems ,
but  what  if  we divide

into more or fewer parts ?

Consider Tcn ) E qT( Ma ) t Cn C where of > 2)

e. g . 8=3 Cn

① " 2On12① 12 3 CSI )

¥68668687
u⇒

.  
- - - -

- -  - -
- - - -

Still lgln) levels , and each does q
't (F) work = (8/2)

't
Cn work

Summing over all levels :

Tense
"

look )tcn= en

"

cgs.gs
.

w
geometric sum with r > ±



r .
look ) Tween ( rbI) ' cnfr.FI?n)

In ) I ( ¥ ) n regent

- for all a
,

b > 1 a
log b

= blog a

,
so r

log n

= n
log r

Tcn ) E ( IT ) n
.

n
BY

= ( ¥ ) n . nest 812 )
= ( ⇒ n . nega - I

± ( I , )nG⑨=O( neg to ) )
What about for q= I ?

O en

⑥ cnta

!

Turns out to be Oln )
, try to show this

.



Problem : Counting Inversions

- Suppose customers rank a list  of movies

- How  can we compare the similarity of these rankings ?

I I
I I

2
3

z 3

3 2
3544
y 4

5 5 5 2

T 9
Similar dissimilar

One measure is #  of inversions
-

-

assume one ranking is 1,2 ,
. . . , n

- let  other be 9,92 ,
.

.  - san

- An inversion is a pair Ci
, j ) s 't

.

i < j but aj Lai  
.



- two identical rankings have 0 inversions

- How  

many
for opposite rankings ?

 
. . .

(7)

How can we count inversions quickly ?

- Check every pair ? Ocn ' )

- Some orderings may have On ' ) inversions
, so ,

to  do better
,

we will have to count multiple inversions at the same time .

- A smart Ddc algo . will give us Och log n )

Suppose I had a
"

recursive " algo that would tell
you for a

, ,
.

. .

, an
# of inversions in each half :

- ¥
Inv I Inv 2

n
a

- -
# of inversions in each half

What  inversions are missed by simply taking Inv I t Ind ?

- The inversions crossing the split ! ( half crossing inversions )
.



Consider the following alg .

Sort And Count ( L ) :

if 14=1 : return O
,

L

A
,
B = first  a  second halves of L

inv A
,

sorted A  = Sort And Count CA )
inv B

,
sorted B = Sort And Count CB )

cross Inv
, sortedL = Merge And Count ( Sorted A

,
Sorted B)

return inv At  inv Bt cross Inv
,

sorted L

Note : Sorting happens as a byproduct of this algorithm

Half -

crossing
inversions

, A- B

- --
ai > big



What if each Sub list  is sorted ?

.
 If we find some ai , big  with ai 7 big ,

we can infer many other

inversions . sorted A Sorted B

IT ITIai lbjl= -

-
suppose ai > bj ,

then all items here are cilso larger than big
but we can obtain #  of  items in the shaded area in constant

Sorted
time . a x

Merge And Count LA
,
B ):

a=b= cross count  = O
,

out List  = E ]

while a - IAI and b a IBI :

next  = min ( Ata ]
,

B2b ] )
out List .  append C next )
If DEBT = next

|
else !!!!nt=cross count t IAI -

a

End While

append the non - empty list to out List

return cross Count
, out List



- Note : Merge And Count takes Ocn ) time

-  What is the running time of Sort And Count ?

- Breaks the problem  into 2 halves
,

solves recursively ,

merging is Ocn )
.

Tcn ) I -21742 ) tch

- we have seen exactly this recurrence before
.

It solves to :

Tca ) c- Ocn log n )
.


