The Cut Property says which edges must appear in some MST. Is there a way to guarantee the opposite?

(4.20) **The Cycle Property**: Let $G=(V,E)$ be a weighted graph with distinct edge weights and let C be some cycle in G. Then if $e \in \mathcal{E}$, w is the heaviest edge in C, it is not in any MST of G.
Proof: Assume such a G and C, and let T be a spanning tree of G that contains e. Consider removing e from T.

This partitions T into 2 disjoint components, S (containing v) and $V-S$ (containing w). In the original graph, because there was a cycle, there was some other path that connected v and w. Consider the following diagram:

![Diagram](image.png)

$C = v, \ldots, x, y, \ldots, w, v$

wlog consider labeling the nodes participating in the cycle as above. Since v and x are in the same component, there exists some $v-x$ path in S. Likewise for y and w. We have removed e from T, but we can re-connet T by adding e'. Since we removed e, then adding e' won't create cycles. Further, $T - e \cup e'$ is a spanner. Finally, since e was the heaviest edge in the cycle C, then $T - e \cup e'$ has a spanning tree with strictly lesser weight. So, e cannot be in any MST of G.

Clustering: An application of MST

Given: A set of \(n\) items \(p_1, p_2, \ldots, p_n\) and a "distance" function \(d(p_i, p_j)\) that allows us to measure the distance/dissimilarity between any pair of objects. Note: we need that \(d(p_i, p_i) = 0\) and \(d(p_i, p_j) > 0\) for \(p_i \neq p_j\) and \(d(p_i, p_j) = d(p_j, p_i)\), but \(d(\cdot, \cdot)\) need not be a metric.

Find: \(k\) non-empty groups partitioning the \(n\) items so that the minimum distance between different groups is maximized.

E.g.:
Idea:
- Maintain clusters as a set of connected components in a graph.
- Iteratively combine clusters containing the two closest items by adding an edge between them.
- Stop when there are k clusters.

Note: This is exactly Kruskal's algorithm with early stopping. This is often called "single-linkage, agglomerative clustering."

Theorem (MST clust): The MST clustering algo. produces a set of clusters $C = \sum_{i=1}^{k} C_i$ with a maximum spacing.
Proof: First, observe that stopping Kruskal's early leads to \(k \) clusters, this is equivalent to taking the full MST and removing the \(k-1 \) most expensive edges. The spacing of \(C \) is the length of this \((k-1)^{st}\) most expensive edge.

Let \(C' \) be some other \(k \) clustering. \(C' \) must have the same or smaller separation as \(C \), why?

Since \(C \neq C' \), there must be some pair \(p_i, p_j \) that are in the same cluster \(C_r \) in \(C \) but in different clusters \(C'_s, C'_t \) in \(C' \).

Since \(p_i, p_j \) are in \(C_r \), there is a path \(P_{ij} \) between them with all edges \(\leq d \). Some edge of this path must pass between \(C'_s \) and \(C'_t \), so the separation of \(C' \) is at most \(d \).
Divide and Conquer

- A different algorithm design technique than greedy.
- Decompose the problem into subproblems - solve recursively - recompose
- Will start with how to analyze using recurrence relations and then cover some D&C algorithms.
- Recurrence relations are useful to analyze running times even when algos are not efficient.

Recall the Fibonacci Sequence:

\[F_n = F_{n-1} + F_{n-2} \quad F_1 = F_2 = 1 \]

Consider a naive impl of \(\text{fib}(n) \):

\[
\text{fib}(n) : \\
\text{if } n = 0 : \text{ return } 0 \\
\text{if } n=1 \text{ or } n=2 : \text{ return } 1 \\
\text{return } \text{fib}(n-1) + \text{fib}(n-2)
\]
How can we analyze the running time of Fib\((n)\)?

- We know that \(T(n) = T(n-1) + T(n-2) + O(1) \)
 - That is, the time to compute Fib\((n)\) is the time to compute Fib\((n-1)\), Fib\((n-2)\) and add them (which we assume above is constant).

- What does the "tree" of recursive calls look like?

Fib tree

Leaves take constant time
What is the depth of this tree? ⇒ def. bounded by \(n \)
How many leaves? ⇒ \(\leq 2^n \)

Do constant work per leaf and per internal node. ⇒ \(\text{Fib}(n) \in O(2^n) \)

But is this bound tight? How fast does the rightmost branch fall off compared to the leftmost?
⇒ for \(\text{fib}(n) \), we can do better than \(O(2^n) \)
1. The root node has value $\text{fib}(n)$.
2. Each leaf contributes exactly 1 to this sum, $\Rightarrow \text{fib}(n)$ leaves.
3. This is a binary tree, so $\#$ internal nodes is $\#$ leaves $-1 = \text{fib}(n) - 1$.
4. Total $\#$ of nodes is $(2 \cdot \text{fib}(n)) - 1 = O(\text{fib}(n))$.
 \Rightarrow it turns out that this is $O(\phi^n) \approx O(1.618^n)$.

Drawing a recursion tree is a common way to analyze the runtime of recursive (D+C) algorithms.

Let's try with another:

Merge Sort (L):

- if $|L| = 2$: return $[\min(L), \max(L)]$
- else:
 - $L_1 = \text{Merge Sort} (L[0: \lfloor L/2 \rfloor])$
 - $L_2 = \text{Merge Sort} (L[\lfloor L/2 \rfloor + 1: |L| - 1])$
 - Return Combine (L_1, L_2)

This is a simple merge of 2 sorted lists, takes $O(|L_1| + |L_2|)$ time.
Total time $T(n) \leq 2 T(n/2) + cn$, want an upper bound

- 2 methods
 (A) Recursion tree
 (B) Guess + check (via induction)

(A)

Steps:
 1. Write out the work done at each level
 2. Find the height of the tree
 3. Sum over all levels

(1) Here, we do cn work per level
(2) Each level reduces n by a factor of $2 \rightarrow$ at most $\log n$ levels
(3) Sum: $\sum_{i=1}^{\log n} cn = \log n \cdot cn = c(n \cdot \log n) = O(n \log n)$ work
(B) Substitution

steps:
(1) Show $T(K) \leq f(K)$ for some small K
(2) Assume $T(K) \leq f(K)$ for all $K < n$
(3) Show $T(n) \leq f(n)$

Consider this for Merge Sort

$T(n) \leq 2T(n/2) + cn$

Base Case: $T(2) \leq 2 \cdot c \cdot \log 2$

IH: $T(k) \leq c \cdot m \cdot \log m \quad m < n$

IS:

$T(n) \leq 2T(n/2) + cn$
$\leq 2c \cdot (n/2) \cdot \log (n/2) + cn$
$= cn \cdot \log (n/2) + cn$
$= cn \cdot \left[\log(n) - 1 \right] + cn$
$= cn \log(n) - cn + cn$
$= cn \log(n)$
Mergesort solves 2 equal sized subproblems, but what if we divide into more or fewer parts?

Consider \(T(n) \leq q \cdot T(n/2) + cn \) (where \(q > 2 \))

e.g. \(q = 3 \)

Still \(\lg(n) \) levels, and each does \(q \cdot \left(\frac{cn}{2^j} \right) \) work = \((q/2)^j \cdot cn \) work

Summing over all levels:

\[
\frac{T(n)}{cn} \leq \sum_{j=0}^{\lg(n)-1} \left(\frac{q}{2} \right)^j \cdot cn = cn \cdot \left(\sum_{j=0}^{\lg(n)-1} \left(\frac{q}{2} \right)^j \right)
\]

geometric sum with \(r > 1 \)
\[r = \left(\frac{8}{2} \right) \]

\[T(n) \leq c n \left(\frac{r \log(n)}{r-1} \right) \leq c n \left(\frac{\log(n)}{r-1} \right) \]

\[T(n) \leq \left(\frac{c}{r-1} \right) n \log(n) \]

- For all \(a, b > 1 \), \(a^{\log b} = b^{\log a} \), so \(r^{\log n} = n^{\log r} \)

\[T(n) \leq \left(\frac{c}{r-1} \right) n \cdot n \log(r) = \left(\frac{c}{r-1} \right) n \cdot n \log(\frac{8}{2}) = \left(\frac{c}{r-1} \right) n \cdot n \log(8) - 1 \]

\[\leq \left(\frac{c}{r-1} \right) n \log(8) = \mathcal{O}(n \log(8)) \]

What about for \(q = 1 \)?

\[0 \]

\[c n/2 \]

\[; \]

Turns out to be \(\mathcal{O}(n) \), try to show this.
Problem: Counting Inversions

- Suppose customers rank a list of movies.
- How can we compare the similarity of these rankings?

One measure is the number of inversions.

- Assume one ranking is $1, 2, \ldots, n$.
- Let the other be a_1, a_2, \ldots, a_n.
- An inversion is a pair (i, j) s.t. $i < j$ but $a_j < a_i$.

Similar

Dissimilar
- Two identical rankings have 0 inversions.
- How many for opposite rankings? \(n \) \(^2 \) \((1) \)

How can we count inversions quickly?

- Check every pair? \(O(n^2) \)

- Some orderings may have \(O(n^2) \) inversions, so, to do better, we will have to count multiple inversions at the same time.

- A smart Divide and Conquer algo. will give us \(O(n \log n) \)

Suppose I had a "recursive" algo. that would tell you for \(a_1, \ldots, a_n \) the # of inversions in each half:

\[
\begin{array}{c|c}
\hline
\text{Inv 1} & \text{Inv 2} \\
\hline
a_1, \ldots, a_{n/2} & a_{n/2}+1, \ldots, a_n \\
\hline
\end{array}
\]

What inversions are missed by simply taking \(\text{Inv 1} + \text{Inv 2} \)?

- The inversions crossing the split! (half crossing inversions).
Consider the following alg:

SortAndCount (L):
if |L| = 1: return 0, L
A, B = first + second halves of L

invA, sorted A = SortAndCount(A)
invB, sorted B = SortAndCount(B)
crossInv, sorted L = MergeAndCount(Sorted A, sorted B)

return invA + invB + crossInv, sorted L

Note: Sorting happens as a byproduct of this algorithm

Half-crossing inversions

A 0 B
\[
\begin{align*}
A_i &> b_j \\
\end{align*}
\]
What if each sublist is sorted?

If we find some \(a_i, b_j \) with \(a_i > b_j \), we can infer many other inversions.

Suppose \(a_i > b_j \), then all items here are also larger than \(b_j \) but we can obtain the number of items in the shaded area in constant time.

```
MergeAndCount(A, B):
    a = b = cross_count = 0, outList = []
    while \( a < |A| \) and \( b < |B| \):
        next = min(A[a], B[b])
        outList.append(next)
        if B[b] = next
            b = b + 1
            cross_count = cross_count + |A| - a
        else
            a = a + 1
    EndWhile
    append the non-empty list to outList
    return crossCount, outList
```
- Note: Merge And Count takes $O(n)$ time

- What is the running time of Sort And Count?

- Breaks the problem into 2 halves, solves recursively, merging is $O(n)$.

$$T(n) \leq 2T(n/2) + cn$$

- We have seen exactly this recurrence before. It solves to:

$$T(n) = O(n \log n).$$