
Dynamic Programming :

- Often the case that he greedy algorithm works
, despite

what we learned in the section on greedy algorithms .

- Divide a conquer may often help ,
but

many times the reduction
won't be from brute - force C often exponential ) to tractable

C polynomial )
. Usually ,

this technique helps polynomial algorithms
become faster

- Dynamic Programming -

can  we decompose the search space such that
we can construct provably optimal solutions without ever

considering the entire space of solutions Explicitly?



Consider the problem of finding the shortest path in a DAG
.

One can argue that the following Verysimple Dynamic programming algo
will find the shortest path from s to all other nodes .

SPDAGCG ,
s ) :

dist  

Eu ] = A for all at G - Es }

dist Cs ] .

- O

for each v E V - Es } in topological :

dist  Ev ] =  min { distort flu
,

u ) }

CU,
DEE

return dist

Why does this give the shortest path in all cases ?

- The key is the topological !

The algorithm solves a set of "

Sob problems
" { dist  Eu ] I UEV }

•  we begin  with the " smallest "

subproblem dist  Es ]

and build up solutions to progressively larger
sub problems .



Generally , DP exploits two aspects of problem structure

CD Optimal substructure : The solution to a
"

larger
"

problem can

be constructed from the optimal Solutions to smaller " sub problems
"

(2) Overlapping sub problems : sub problems should not need to

be solved over and over again independently .

Consider once more computing the fib sequence .

Fibn-Fbn.at Fiba,
,

Fib
,

= Fib
,

= I

we saw tie recursive algo ,
but  if  I asked YI to compute

Fibre ,
how  would

you do it ?

fits Buen ) :

if n = 2 or n = I : return 1
else :

fib = EO
, 1,1]

for i =3 to n :

Fib . append ( fibti -23 t fib Ei - D )
return fibers



- What is the runtime of this algorithm ?
( assuming fiber ) fits in  a machine word )

- Ocn )
.

. . why ?

- This is exponentially better than the naive recursive algorithm .

-  The following will also  work

Fib Memo -

- E 3

fibTDC n ) :

if n=l or n=2 : return 1

else if n is in fib Memo :

return Fib Memo In ]

else :

fibMemoEn3=fibTDCn - 2) * fib TD ( n - I )
return fib Memo En ]

This solution " remembers " the solution to sub problems it has seen before
to avoid recomputing them

. This  idea is known as
" memorization "

.

DPs can usually be written in either a top down C memorized ) or

bottom -

up manner
. They usually hail the save asymptotic efficiency ,

though bottom -

up is often faster in practice .



Weighted Interval Scheduling :

Given : A collection of n requests labeled 1,2 ,
.

. .

, n each specifying
a start time Si ,

finish time fi ,
and a weight wi .

Find : The subset S E { 1,2 ,
. . .

,
n } that is compatible

and of maximmvat , where we define

WLS ) -

- I
'

wi
its

(

D
,

4=1
,E.

g .

wz =3

(2)
I I

Wz = I

(3) I I

>

Here
,

we prefer to choose 5=22 } since selecting just
interval 2 gives  a greater weight than selecting E 1,33 .



Flow do we search for an optimal Solution in this case ?

⇒ Assume intervals are sorted by finishing times

⇒ Define function pcj ) for  interval j to he the largest icj
such that i and

j are compatible.

E.
g. y ,

4=2 pCD=o

⑦
wz=4 Pato

(3)
↳ = 4

PC3) =/

by = 7 PH )=o
(4)

(5)
w -5-2 pts ) =3

(6) .

Woo = ' PC 6) =3

>



Observe the following about the structure of an optimal solution O

→ Either ne O or n I O
→ If ne O then no interval strictly between pen) and n

can be in & because pcnstl , pen )t2 ,  . . . , n - I must all be

incompatible with n .

→ If ne O then
,

in addition to n
,

O must contain the

optimal solution to the subproblem El
,

2
, . .

. , pens }
, why ?

.  if not
,

it  would not be optimal !

→ In net O then O is the same as the optimal solution of
the subproblem { 1,2 ,  

. . . ,
n - 1.3 for the same reason as above .

For
any subproblem El

, . . .

, j } let Oj be an optimal Sol
.

and Iet

OPTCJ) be the weight of Oj .
We know OPTLO ) = ⑦

We seek On and OPTCN )
. Using our reasoning above

,
for some El

, . . . , j }

either

j E Oj
 ⇒ OPTCJ ) =

Wj t OPT Cpcjs ) or

jet Oj
 ⇒ OPTCJ) = OPT C j - t )



So
,

there are only I choices ! Another
way

to write this is

OPTCJ ) =  max [ OPT C j - D
, wjtOPTLpc.gs ) ]

i. e . choose whichever is better .

This gins that je Oj ⇒ wjt OPTCPCJD 7 OPT C j - I)

⇒ These simple observations lead us toward a DP solution for WIS .

Consider the recursive algo

Recoptcj ) :

if j=o
: return O

else : return maxcwjtrecoptcpcjs)
,

Rec Optlj - t ) )

By induction
,

this algo is correct
,

so what is the problem with it ?

→ same issue as with fib
→ Solution to some sub problems is computed repeatedly;

Could be exponential in the worst case .



E.g .

I I

I I

I I

I I

I I

I I

>

Two solutions to reduce the runtime :

(1) memorize Rec Opt

M= CO
,

0
,

. . .

,
0 ]

Mem Optcj ) :

if j
-

- O : return O
else if I'

EM :

return Maj ]
else :

MEJ ] = max C wjt Mem Opt Lpcjs )
,

Mem Opt ( j
- t ) )

return ME j ]

What is the runtime of Mem Opt ( if pc . ) is constant ) ?
Ocn ) . . . why ?



Proof : Excluding recursive calls
,

time spent in Men Opt C ) is OCI ) .

But
,

since there are only OLD sub problems ,
we assign an entry

to M at most Ocn ) times since each pair  of recursive calls

fills in one value of M
.

Thus
,

the total
running

time  of

Mem Opt  is Ocn )

→Isolation Rather than rely on memorization
,

is there an  ordering that
allows us to  avoid recursion ?

Consider :

Itopccj ) :

Mco ] -

- O

for j = 1,2
,

. .  . n :

Maj ] -

- max ( wjtMEpcjD , Maj - D )
return Man ]

The runtime of It Opt is deadly Oln )
.

. .
constant work for

each of the n steps .
So

,
total time for this problem is dominated

by sorting tie intervals by finish time .



How would we also return On rather than just OPTED ?

Itoptslncn ) :

MEO ] = O
, SEO ) = C 0

,

- I )

for j = 1,2
, . . .

n :

if  wjt MEPCJD 7 ME j - D °

.

MEJ ] =  wjtmtpcjs ]

Scj ]= Cj , pcjs )
\

usingI
Sof { }
f- n this part is

while jet
- I : called "

backtracking
"

its:p.es?.E9jcpco , } } %In!:c'

s

"

Iet 'Fee

r
! ! %

.

ii.ar no:¥ we .



Consider a related ( but different ) problem .

Problem : Subset Sum

Given : A collection of n items
,

each with a positiveinteger weight
wi

, and an integer bound W
.

Find : A subset S of items that maximizes

→2 wi
its

subject to

( It's wi ) EW

C.
g . You have W CPU cycles to use and want to run a set

of jobs ( each taking wi cycles ) that leaves the fewest

idle cycles .
This is somewhat similar to job scheduling .

NOTE : The assumption that wi  and W are all integers is important ;
we will see why later .



Notation :

- Let S 't
be an  optimal selection of  items

- Let OPTCN
,

w ) be the value of Sit

What are the sub problems ?

- The single set we used for WIS doesn't work here
, why ?

-

Including n items doesn't necessarily preclude any
other item

,

but just reduces the usable weight budget .

- So
,

we need to consider betha smaller set of items and
a smaller

remaining budget to define Sob problems in this
Case

.

Consider the following recurrence

OPTCJ ,
w )=ma×{

OPTCJ - I
,

W ) if j ¢ sit

Wj t OPTCJ - I
,

W -

wj )
if je S

't

OPT ( o
,

w ) = O t no items
OPT C j ,

O ) = O t no space lbudjet
Special case if wj > W then OPT Cj ,

W ) = OPT ( j - I
,

W )



Equivalently , we can write
.

OPTCj.ws#8PTjiI.wEoifigFow
max { OPTCJ - I

,
w ) if jet S 't

^

wjt OPTCJ - I
,

W -

wig) if j ES

d
!

't know which is better so

we most compote both .



It we use the recurrence
, we fill in a table that looks like

9 o µ##
← OPTCN ,

w )

8 O

first 7 O

j 6 0 Et
items soI

4
0

IITOPTC4.lt

) - best solution considering
3 o the first 4 items and using only
2 o 1 unit of weight budget
I O

O O O O O 0 O O O O O O O O

O I 23 4 5 6 7 89 10 11 12

total weight used

Each box is filled in by looking at smaller sub problems .

If we fill in the table from bottom left to top right , then

every time we need the valve of a subproblem , it has

already been computed



Subset Sum ( n
,

w ) :

MEO , D= O for r -

- O
, .

. .

,
W

Mcj ,
o ] = O for j

-
- O

, . . .

,
n

for j
-

- I
,

. .
. ,

n :

for if o
,

. . . ,W :

If  wcj ] > r :

I Major ] -

- Mlj -t.is//4semcj.rJ--maxCMCj-i,r3,wcjstMEj-t,r-wcj5d

return Man , W ]



To obtain the actual set
, we also need to maintain our back pointers ,

when we fill in  a cell
,

we pain to the cell whose valve we

used
.

q • What  items does this path of

8 t
back - pointers include ?

7 I
6

t { 8,5 , 4,23
5 d

4 I why?
3 I
2 t For each I arrow

,
we don't useif any of the weight budget ,

which
0 means we can 't  include te element

O I 2 3 45 6 78 9 to since alt wi are positive integers .

What is the runtime of Subset Sum ?

- Each cell takes OCD time to decide
-  Trace back takes Ocn ) time
-  

There are Olnw) cells
- Overall Ocnwtn ) = 0GW )

r a- -

Why are we including W here
,

isn't it just a constant factor?



This algorithm is what  is known as pseudo - polynomial .
The runtime

depends not just  on n
,

but on the size of the input weights .

We will learn more about this when we talk about complexity ,

but  it  is important to draw  a distinction between algorithms
whose

complexity
is polynomial in the number of inputs and those

whose complexity is polynomial in the numerical of the input .

This is particularly important because a polynomial number
of bits C e.g . n ) can represent a number of exponential
value in tie number of bits ( e.g . 2 " )

.



A related problem : Knapsack

Given : A collection of n items { I
,

.
. . , n } each with a

weight wi ,
valve Vi ,

and a global weight budget W .

Find : A subset S of items that maximizes :

?¥ Vi  subject to ¥j wi E W

Note : The difference from subset sum here is that
you want

to maximize the valet rather than the weight .
for example,

a laptop may be worth more than a TV
,

bot be much

lighter .



How about a greedy approach ?

⇒ Larger vi  is better
⇒ Smaller  wi  is better

⇒ Sort items by pi
-

- Vilwi C value per unit  weight )

E. g .

$30 IT p ,
= 30

$40 IT Pz - - 20

$45 IT Ps = 15

$50 TX Py = 25

Say knapsack size ( W ) is 6

I 4 2 {

$30 t $100 t ( 42 ) ( $20) = $150



This
Greedy approach would work if we could take

fractional items
,

but we can 't
.

Consider a variant of the greedy alg . that discards elements
that don't fit

.

I 4

$30 t $ too = $130
A better choice is

- IS
$100 t $40 = $140

Since we must include an element  as
" all or nothing

"

,

we call this variant O - I Knapsack .



Recall the subset sum recurrence

OPTCJ ,
w ) = max { OPTCJ - I

,
w ) if jets

't

WJTOPTCJ - I
,

w - Wj) if jest
and consider the

following modification for 0-1 knapsack

OPTCJ ,
w )=ma×{

OPT ( j - I
,

w ) if jets
't

VJTOPTCJ - I
,

w -

wj ) if jes
't

Since we have no value "

budget
"

we only have to

maximize our value subject to  our weight budget .

This has the same basic form as subset - sum .
A

trivial modification of that algorithm solves this

problem .


