Problem 4. (20 points) Suppose you are given two strings x and y, of lengths m and n, respectively, a character match / mismatch cost function $m(a, b)$, and a gap cost $cost_g$. Here, an optimal alignment is an alignment of minimum cost between x and y.

i. Give a dynamic program that computes the number of optimal global alignments between x and y for arbitrary $m(\cdot, \cdot)$ and $cost_g$. Your algorithm should run in $O(mn)$ time and space. Explain (no formal proof is necessary) why your algorithm is correct.

ii. Give a dynamic program that will compute the (distinct) cost and path of a lowest cost sub-optimal solution. That is, it should return a cost c' strictly greater than then optimal cost c^*, but there should not exist any c'' with $c^* < c'' < c'$. This represents the best solution that is strictly worse than optimal (i.e. the second-best solution). If there are no sub-optimal solutions (i.e. if every solution is optimal), then your algorithm should report this. Your algorithm should run in $O(mn)$ time and space.